Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(12): e202300225, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36695741

ABSTRACT

The activity of various additives promoting siloxane equilibration reactions is examined and quantified on model compounds. We found in particular that the "superbase" phosphazene derivative P4 -t Bu can promote very fast exchanges (a few seconds at 90 °C) even at low concentration (<0.1 wt %). We demonstrate that permanent silicone networks can be transformed into reprocessable and recyclable dynamic networks by mere introduction of such additives. Annealing at high temperature degrades the additives and deactivates the dynamic features of the silicone networks, reverting them back into permanent networks. A simple rheological experiment and the corresponding model allow to extract the critical kinetic parameters to predict and control such deactivations.

2.
Angew Chem Int Ed Engl ; 58(44): 15883-15889, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31498536

ABSTRACT

While the introduction of polymers into aerogels strongly enhances their toughness, truly elastic monolithic aerogels which restore their dimensions upon extensive compression are still challenging to synthesize. In this context hydrophobic semi-crystalline polymers with low glass transition temperatures, and combined stiffness and flexibility, have only recently attracted attention. Shown here is that polyethylene aerogels with a low density, and combined chemical crosslinking and high crystallinity, display high moduli and excellent mechanical resilience. To maximize the crystallinity of these aerogels while maintaining a high crosslinking density, polyethylene networks with well-defined segments were synthesized by hydrosilylation crosslinking of telechelic, vinyl-functionalized oligomers obtained from catalyzed chain-growth polymerization. Recoverable deformations both above and below the melting temperature of polyethylene affords remarkable shape-memory properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...