Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 12(10)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36294956

ABSTRACT

Potato Virus Y (PVY) is a serious potato disease that may significantly decrease potato production. To suppress potato virus infection, several measures have been undertaken. The utilization of plant growth-promoting rhizobacteria is one of these methods. Biochar soil treatment is believed to provide plants with a number of advantages, including increased plant growth and the development of systemic resistance to a variety of plant diseases. The goal of this research was to see whether adding biochar and Klebsiella oxytoca to the soil might cause PVY resistance and enhance the involved mechanisms in PVY resistance. Potato and tobacco seedlings treated with Klebsiella oxytoca and biochar exhibited the same impact of significant symptom reduction, with complete negative ELISA findings, supporting the antiviral activity of K. oxytoca and biochar. Furthermore, owing to the connection between the ISR implicated substrates, significant amounts of polyphenol oxidase, catalase, and superoxide dismutase were observed in treated plants, with the same behavior as defense genes expression levels. It may be a step forward in the development of biochar and K. oxytoca as potential environmentally friendly disease control strategies against PVY.

2.
Life (Basel) ; 12(3)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35330100

ABSTRACT

Sheath blight disease is a fungal pathogen that causes leaf blight in rice plants, resulting in significant yield losses throughout the growing season. Pseudomonas spp. have long been used as biocontrol agents for a variety of plant diseases. Four Pseudomonas isolates were tested for their ability to promote rice growth and generate systemic resistance to Rhizoctonia solani, the causal pathogen of sheath blight disease. In vitro, Pseudomonas isolates produced the growth hormone indole acetic acid (0.82-1.82 mg L-1). Additionally, seed treatment with Pseudomonas putida suspension outperformed P. brassicacearum, P. aeruginosa and P. resinovorans in terms of germination and vigor evaluation. The maximum seed germination of 89% was recorded after seed treatments with a fresh suspension of P. putida, followed by 87% germination in P. aeruginosa treatment, compared with only 74% germination in the untreated controls. When compared with the infected control plants, all Pseudomonas isolates were non-pathogenic to rice and their co-inoculation considerably enhanced plant growth and health by reducing the disease index to 37% and improving plant height (26%), fresh weight (140%) and dry weight (100%). All Pseudomonas isolates effectively reduced sheath blight disease incidence, as well as the fungicide carbendazim, which is recommended for field management of R. solani. In comparison to untreated control seedlings, treatment with Pseudomonas isolates enhanced the production of peroxidase and polyphenol oxidase enzymes and the expression of the phenylalanine ammonia lyase (PAL) and NPR1 genes, which could be involved in disease incidence reduction. In conclusion, the use of Pseudomonas spp. has been demonstrated to improve rice growth and resistance to R. solani while also providing an environmentally acceptable option to the agroecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...