Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 17048, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36221023

ABSTRACT

We combine IR pump and XUV probe laser pulses to visualize the Kramers-Henneberger (KH) state of the potassium atom. We demonstrate that ionization of such an atom exhibits some molecular-like features such as low order interference maxima in photoelectron momentum spectra. The locations of these maxima allow to estimate spatial dimensions of the KH atom and can be used for accurate calibration of high intensity laser fields. At the same time, we show that an analogy between the KH atom and a homo-nuclear diatomic molecule cannot be extended too far. In particular, higher order interference maxima are very difficult to observe in the case of the KH state. We attribute this to a particular structure of the KH potential which does not confine electron motion to a well-defined potential well unlike in real diatomic molecules.

2.
Phys Rev Lett ; 121(17): 173003, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30411931

ABSTRACT

We report on a kinematically complete measurement of double ionization of helium by a single 1100 eV circularly polarized photon. By exploiting dipole selection rules in the two-electron continuum state, we observed the angular emission pattern of electrons originating from a pure quadrupole transition. Our fully differential experimental data and companion ab initio nonperturbative theory show the separation of dipole and quadrupole contributions to photo-double-ionization and provide new insight into the nature of the quasifree mechanism.

3.
Science ; 360(6395): 1326-1330, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29930132

ABSTRACT

Attosecond metrology of atoms has accessed the time scale of the most fundamental processes in quantum mechanics. Transferring the time-resolved photoelectric effect from atoms to molecules considerably increases experimental and theoretical challenges. Here we show that orientation- and energy-resolved measurements characterize the molecular stereo Wigner time delay. This observable provides direct information on the localization of the excited electron wave packet within the molecular potential. Furthermore, we demonstrate that photoelectrons resulting from the dissociative ionization process of the CO molecule are preferentially emitted from the carbon end for dissociative 2Σ states and from the center and oxygen end for the 2Π states of the molecular ion. Supported by comprehensive theoretical calculations, this work constitutes a complete spatially and temporally resolved reconstruction of the molecular photoelectric effect.

4.
Nat Commun ; 9(1): 2259, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29872047

ABSTRACT

The original version of this Article contained an error in the fifth sentence of the first paragraph of the 'Application on H2' section of the Results, which incorrectly read 'The role of electron correlation is quite apparent in this presentation: Fig. 1a is empty for the uncorrelated Hartree-Fock wave function, since projection of the latter wave function onto the 2pσu orbital is exactly zero, while this is not the case for the fully correlated wave function (Fig. 1d); also, Fig. 1b, c for the uncorrelated description are identical, while Fig. 1e, f for the correlated case are significantly different.' The correct version replaces 'Fig. 1e, f' with 'Fig. 2e and f'.

5.
Nat Commun ; 8(1): 2266, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273745

ABSTRACT

The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

6.
Phys Rev Lett ; 119(7): 073203, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28949652

ABSTRACT

Single-photon laser-enabled Auger decay (spLEAD) is predicted theoretically [B. Cooper and V. Averbukh, Phys. Rev. Lett. 111, 083004 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.083004] and here we report its first experimental observation in neon. Using coherent, bichromatic free-electron laser pulses, we detect the process and coherently control the angular distribution of the emitted electrons by varying the phase difference between the two laser fields. Since spLEAD is highly sensitive to electron correlation, this is a promising method for probing both correlation and ultrafast hole migration in more complex systems.

7.
Sci Rep ; 6: 34101, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27666403

ABSTRACT

This work describes the first observations of the ionisation of neon in a metastable atomic state utilising a strong-field, few-cycle light pulse. We compare the observations to theoretical predictions based on the Ammosov-Delone-Krainov (ADK) theory and a solution to the time-dependent Schrödinger equation (TDSE). The TDSE provides better agreement with the experimental data than the ADK theory. We optically pump the target atomic species and measure the ionisation rate as the a function of different steady-state populations in the fine structure of the target state which shows significant ionisation rate dependence on populations of spin-polarised states. The physical mechanism for this effect is unknown.

8.
Sci Rep ; 6: 19002, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26740072

ABSTRACT

We study transverse electron momentum distribution in strong field atomic ionization driven by laser pulses with varying ellipticity. We show, both experimentally and theoretically, that the transverse electron momentum distribution in the tunneling and over the barrier ionization regimes evolves in a qualitatively different way when the ellipticity parameter describing polarization state of the driving laser pulse increases.

9.
Phys Rev Lett ; 111(1): 013003, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23862999

ABSTRACT

We investigate the single-photon double ionization of helium at photon energies of 440 and 800 eV. We observe doubly charged ions with close to zero momentum corresponding to electrons emitted back to back with equal energy. These slow ions are the unique fingerprint of an elusive quasifree photon double ionization mechanism predicted by Amusia et al. nearly four decades ago [J. Phys. B 8, 1248 (1975)]. It results from the nondipole part of the electromagnetic interaction. Our experimental data are supported by calculations performed using the convergent close-coupling and time-dependent close-coupling methods.

10.
Phys Rev Lett ; 110(8): 083001, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23473139

ABSTRACT

The double photoionization of Mg has been studied experimentally and theoretically in a kinematic where the two photoelectrons equally share the excess energy. The observation of a symmetrized gerade amplitude, which strongly deviates from the Gaussian ansatz, is explained by a two-electron interference predicted theoretically, but never before observed experimentally. Similar to the Cooper minima in the single photoionization cross section, the effect finds its origin in the radial extent and oscillation of the target wave function.

11.
Opt Lett ; 36(18): 3660-2, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21931424

ABSTRACT

We present experimental data on strong-field ionization of atomic hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10% level between the data and an ab initio simulation over a wide range of laser intensities and electron energies.

12.
Xin Li Xue Bao ; 42(1): 138-158, 2010 Jan 30.
Article in English | MEDLINE | ID: mdl-20352069

ABSTRACT

We describe a fully automated, live-in 24/7 test environment, with experimental protocols that measure the accuracy and precision with which mice match the ratio of their expected visit durations to the ratio of the incomes obtained from two hoppers, the progress of instrumental and classical conditioning (trials-to-acquisition), the accuracy and precision of interval timing, the effect of relative probability on the choice of a timed departure target, and the accuracy and precision of memory for the times of day at which food is available. The system is compact; it obviates the handling of the mice during testing; it requires negligible amounts of experimenter/technician time; and it delivers clear and extensive results from 3 protocols within a total of 7-9 days after the mice are placed in the test environment. Only a single 24-hour period is required for the completion of first protocol (the matching protocol), which is strong test of temporal and spatial estimation and memory mechanisms. Thus, the system permits the extensive screening of many mice in a short period of time and in limited space. The software is publicly available.

13.
Phys Rev Lett ; 105(23): 233002, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21231456

ABSTRACT

We analyze the time delay between emission of photoelectrons from the outer valence ns and np subshells in noble gas atoms following absorption of an attosecond extreme ultraviolet pulse. Various processes such as elastic scattering of the photoelectron on the parent ion and many-electron correlation affect the apparent "time zero" when the photoelectron leaves the atom. This qualitatively explains the time delay between photoemission from the 2s and 2p subshells of Ne as determined experimentally by attosecond streaking [Science 328, 1658 (2010)]. However, with our extensive numerical modeling, we were only able to account for less than half of the measured time delay of 21 ± 5 as. We argue that the extreme ultraviolet pulse alone cannot produce such a large time delay and it is the streaking IR field that is most likely responsible for this effect.

14.
Phys Rev Lett ; 102(7): 073006, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19257666

ABSTRACT

We report on the photon energy dependence of the K-shell double photoionization (DPI) of Mg, Al, and Si. The DPI cross sections were derived from high-resolution measurements of x-ray spectra following the radiative decay of the K-shell double vacancy states. Our data evince the relative importance of the final-state electron-electron interaction to the DPI. By comparing the double-to-single K-shell photoionization cross-section ratios for neutral atoms with convergent close-coupling calculations for He-like ions, the effect of outer shell electrons on the K-shell DPI process is assessed. Universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms is revealed.

15.
Phys Rev Lett ; 101(7): 073003, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18764529

ABSTRACT

Recoil-ion momentum distributions for two-photon double ionization of He and Ne (variant Planck's over omega=44 eV) have been recorded with a reaction microscope at FLASH (the free-electron laser at Hamburg) at an intensity of approximately 1 x 10(14) W/cm2 exploring the dynamics of the two fundamental two-photon-two-electron reaction pathways, namely, sequential and direct (or nonsequential) absorption of the photons. We find strong differences in the recoil-ion momentum patterns for the two mechanisms pointing to the significantly different two-electron emission dynamics and thus provide serious constraints for theoretical models.

16.
Phys Rev Lett ; 98(19): 193201, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17677618

ABSTRACT

Double ionization of the helium atom by slow electron impact (E(0)=106 eV) is studied in a kinematically complete experiment. Because of a low excess energy E(exc)=27 eV above the double ionization threshold, a strongly correlated three-electron continuum is realized. This is demonstrated by measuring and calculating the fully differential cross sections for equal energy sharing of the final-state electrons. While the electron emission is dominated by a strong Coulomb repulsion, also signatures of more complex dynamics of the full four-body system are identified.

17.
Phys Rev Lett ; 95(24): 243003, 2005 Dec 09.
Article in English | MEDLINE | ID: mdl-16384373

ABSTRACT

Partial photoionization cross sections sigmaN(Egamma) and photoelectron angular distributions betaN(Egamma) were measured for the final ionic states He+ (N > 4) in the region between the N = 8 and N = 13 thresholds (Egamma > 78.155 eV) using the cold target recoil ion momentum spectroscopy technique (COLTRIMS). Comparison of the experimental data with two independent sets of theoretical predictions reveals disagreement for the branching ratios to the various HeN(+) states. The angular distributions just below the double ionization threshold suggest an excitation process for highly excited N states similar to the Wannier mechanism for double ionization.

18.
Phys Rev Lett ; 95(3): 033201, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16090741

ABSTRACT

Simultaneous ionization and excitation of helium atoms by 500 eV electron impact is observed by a triple coincidence of an ionized slow electron, the recoiling He+ ion, and the radiated vacuum ultraviolet photon (lambda< or =30.4 nm). Kinematically complete differential cross sections are presented for the He+(2p)2P final ionic state, demonstrating the feasibility of a quantum mechanically complete experiment. The experimental data are compared to predictions from state-of-the-art numerical calculations. For large momentum transfers, a first-order treatment of the projectile-target interaction can reproduce the experimental angular dependence, but a second-order treatment is required to obtain consistent magnitudes.

19.
Nature ; 431(7007): 437-40, 2004 Sep 23.
Article in English | MEDLINE | ID: mdl-15386008

ABSTRACT

All properties of molecules--from binding and excitation energies to their geometry--are determined by the highly correlated initial-state wavefunction of the electrons and nuclei. Details of these correlations can be revealed by studying the break-up of these systems into their constituents. The fragmentation might be initiated by the absorption of a single photon, by collision with a charged particle or by exposure to a strong laser pulse: if the interaction causing the excitation is sufficiently understood, the fragmentation process can then be used as a tool to investigate the bound initial state. The interaction and resulting fragment motions therefore pose formidable challenges to quantum theory. Here we report the coincident measurement of the momenta of both nuclei and both electrons from the single-photon-induced fragmentation of the deuterium molecule. The results reveal that the correlated motion of the electrons is strongly dependent on the inter-nuclear separation in the molecular ground state at the instant of photon absorption.

20.
Phys Rev Lett ; 92(16): 163001, 2004 Apr 23.
Article in English | MEDLINE | ID: mdl-15169223

ABSTRACT

We report the first kinematically complete study of the four-body fragmentation of the D2 molecule following absorption of a single photon. For equal energy sharing of the two electrons and a photon energy of 75.5 eV, we observed the relaxation of one of the selection rules valid for He photo-double-ionization and a strong dependence of the electron angular distribution on the orientation of the molecular axis. This effect is reproduced by a model in which a pair of photoionization amplitudes is introduced for the light polarization parallel and perpendicular to the molecular axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...