Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nephrol ; 2024: 1511216, 2024.
Article in English | MEDLINE | ID: mdl-38799728

ABSTRACT

Cisplatin (CDDP) is a highly potent chemotherapy drug. But its nephrotoxicity poses a significant limitation to its use. The renin-angiotensin system (RAS) has been proposed to play a role in drug-induced nephrotoxicity. This systematic review (SR) sought to identify the link between CDDP-induced nephrotoxicity and the RAS pathway. In this SR, relevant keywords were employed to explore databases such as PubMed (MEDLINE), Scopus (Elsevier), and Institute for Scientific Information (ISI) Web of Science up to October 2023. Nine studies were selected based on predefined inclusion/exclusion criteria. The findings support the involvement of the RAS in the CDDP-induced nephrotoxicity model, along with the activation of inflammatory mediators, lipid peroxidation, and changes in markers of kidney tissue damage. Furthermore, physiology and pathology of RAS-related interventions in CDDP-induced nephrotoxicity models have involved the factors such as human organic cation transporter 2 (hOCT2), organic anion transporting polypeptides 1B1 (OATP1B1) and 1B3, kallikrein-kinin system, and bradykinin receptors. CDDP-induced nephrotoxicity has been found to be substantially influenced by both classic and nonclassic RAS axes. Angiotensin II exacerbates renal damage induced by CDDP. Conversely, inhibiting the pressor arm of RAS in males mitigates this damage. However, activation of the renal vasodepressor arm of RAS exacerbates CDDP-induced nephrotoxicity in females. These findings underscore gender differences in renal function and response to RAS-related interventions in the presence of CDDP. This SR provides insights into both beneficial and adverse interventions associated with RAS in the CDDP-induced nephrotoxicity, offering valuable considerations for researchers and clinicians.

2.
Rev Environ Health ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37534601

ABSTRACT

Through the Mas receptor, angiotensin-(1-7) [Ang-(1-7)] has been shown to have a key role in the development of lung inflammation. This systematic review (SR) sought to identify the relationship between lung damage brought on by exposure to cigarette smoke (CS) and the ACE2-Ang-(1-7)-Mas pathway. In this investigation, relevant keywords were used to search PubMed (MEDLINE), Scopus (Elsevier), and Institute for Scientific Information (ISI) Web of Science up to December 2022. Nine studies were chosen because they satisfied the inclusion/exclusion criteria. The majority of research concluded that exposure to CS increased the risk of lung damage. Smoking cigarettes is the main cause of COPD because it causes massive amounts of reactive oxygen and nitrogen species to enter the lungs, which stimulate the production of inflammatory cytokines like IL-1 ß, IL-6, and TNF-α, as well as the invasion of inflammatory cells like neutrophils and macrophages. These findings support the renin-angiotensin system's (RAS) involvement in the pathophysiology of smoking-induced damage. Additionally, via stimulating pro-inflammatory mediators, aberrant RAS activity has been linked to lung damage. Lung inflammation's etiology has been shown to be significantly influenced by the protective known RAS arm ACE2-Ang-(1-7)-Mas. In conclusion, these are important for informing policymakers to pass legislation limiting the use of smoking and other tobacco to prevent their harmful effects.

3.
Avicenna J Phytomed ; 10(1): 50-57, 2020.
Article in English | MEDLINE | ID: mdl-31921607

ABSTRACT

OBJECTIVE: In cardiovascular diseases, inflammatory response plays an important role and affects heart function. As a flavonoid compound, p-coumaric acid (pCA), commonly exists in many fruits and vegetables and has a therapeutic effect on inflammatory diseases due to its anti-inflammatory properties. The purpose of the present study was to investigate pCA anti-inflammatory effect and the miRNAs (miRs) signaling pathway involved in cardiac inflammation following lipopolysaccharide-induced acute lung injury (ALI). MATERIALS AND METHODS: Thirty-two Sprague-Dawley male rats were divided into 4 groups: control (received saline for 10 days, i.p.), LPS (received saline for 10 days+5 mg/kg LPS on day 8, intratracheally), pCA (received pCA 100 mg/kg for 10 days, ip), and LPS+pCA (received LPS+pCA). The level of IL-1ß, IL-18 in heart tissue and IL-1ß in bronchoalveolar lavage fluid (BALF) was determined by ELISA kits. Also the level of lactate dehydrogenase (LDH) in heart tissue and myeloperoxidase (MPO) in lung tissue were measured, and pCA effect on miR- 146a in heart tissue was analyzed. RESULTS: Data showed that 100 mg/kg of pCA significantly suppressed LDH activity (p<0.05), IL-18 (p<0.05) and IL-1ß (p<0.01) level in heart tissue. Also, in BAL, IL-1ß and MPO levels were significantly reduced (p<0.001). Finally, pCA modulated activation of miR-146a (p<0.05) in LPS -induced cardiac injury. CONCLUSION: These findings indicated that LPS causes cardiac dysfunction and pre-treatment with pCA, as an anti-inflammatory agent, improved cardiac inflammation through modulation of miR-146a, and reducing cytokines and LDH activity.

4.
Iran J Basic Med Sci ; 22(8): 949-955, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31579452

ABSTRACT

OBJECTIVES: Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a therapeutic effect in several inflammatory disorders. The aim of our study was evaluation of pretreatment with p-CA against heart dysfunction, oxidative stress and nuclear factor-erythroid 2 -related factor 2 (Nrf2) modifications following lipopolysaccharide (LPS)-induced acute lung inflammation. MATERIALS AND METHODS: The rats were divided into four groups (n=8): Control, LPS (5 mg/kg, it), p-CA (100 mg/kg, IP), and LPS+pCA. Inflammatory response and oxidative stress were evaluated by measurement of interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α) and malondialdehyde (MDA) levels in heart tissue. For evaluation of the effect of LPS on cardiac response, electrocardiography (ECG) and hemodynamic parameters were recorded. RESULTS: A significant increase in lipid peroxidation (P<0.001, cytokine parameters (TNF-α and IL-6 (P<0.01), gene expression of Nrf2 (P<0.05), and antioxidant activity of superoxide dismutase and glutathione (P< 0.05) in addition to glutathione peroxidase (P<0.01) was demonstrated in heart tissue of ALI rats. LPS can impair cardiac function (in in vitro measurement of hemodynamic parameters by using Langendorff setup, and in in vivo measurement of ECG parameters), and pretreatment with p-CA recovered these parameters to control levels in heart. Pretreatment with p-CA causes modulation of cytokines and MDA level that protected cardiac injury caused by LPS in ALI model. CONCLUSION: Our results showed anti-inflammatory and antioxidative effect of p-CA on LPS-induced ALI.

5.
Inflammation ; 42(6): 1939-1950, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31267276

ABSTRACT

Lipopolysaccharide (LPS), known as lipoglycans and endotoxins found in the cell wall of some type of Gram-negative bacteria, causes acute lung inflammation (ALI). p-Coumaric acid (p-CA) possesses anti-inflammatory and anti-oxidative activities. The main purpose of our research was to explore the effect of p-CA on LPS-induced inflammation. In part I, 32 rats were divided into four groups: Control, LPS (5 mg/kg), p-CA (100 mg/kg), and LPS + p-CA to investigate acute lung inflammation caused by LPS. In part II, the effect of LPS-stimulated inflammatory response on A549 cells was investigated. The dosage of LPS and p-CA which used in this part was 1 µg/ml and 20 mM, respectively. ALI rats showed an elevation in antioxidant activity, TNF-alpha, IL-6, MDA, inflammatory parameters, and Nrf2 gene expression. Although pre-treatment with p-CA could return these changes approximately to normal condition in all two-part studies (in vivo and in vitro). The results of in vivo and in vitro study showed that LPS induced lung inflammation. Pre-treatment with p-CA causes modulating of oxidative stress in inflammatory condition in lung injury and A549 cell.


Subject(s)
Pneumonia/drug therapy , Propionates/pharmacology , Reactive Oxygen Species/metabolism , A549 Cells , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Coumaric Acids , Humans , Lipopolysaccharides , Oxidative Stress/drug effects , Pneumonia/prevention & control , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...