Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 65(10): 105010, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32143200

ABSTRACT

Several direct algorithms have been proposed to take into account the non-linear path of protons in the reconstruction of a proton CT (pCT) image. This paper presents a comparison between five of them, in terms of spatial resolution and relative stopping power (RSP) accuracy. Our comparison includes (1) a distance-driven algorithm extending the filtered backprojection to non-linear trajectories (DD), (2) an algorithm reconstructing a pCT image from optimized projections (ML), (3) a backproject-then-filter approach using a 2D cone filter (BTF), (4) a differentiated backprojection algorithm based on the inversion of the Hilbert transform (DBP), and (5) an algorithm using a 2D directional ramp filter (DR). We have simulated a single tracking pCT set-up using Geant4 through GATE, with a proton source and two position, direction and energy detectors upstream and downstream from the object. Tracker uncertainties were added on the position and direction measurements. A Catphan 528 phantom and a spiral phantom were simulated to measure the spatial resolution and a Gammex 467 phantom was used for the RSP accuracy. Each proton's trajectory was estimated using a most likely path (MLP) formalism. The spatial resolution was evaluated using the frequency corresponding to a modulation transfer function of 10% of its peak value and the RSP accuracy using the mean values in the inserts of the Gammex phantom. In terms of spatial resolution, it was shown that, for ideal trackers, the DR and BTF methods offer a slightly better resolution since each proton is directly binned in the image grid according to its MLP. However, all methods but the ML show comparable resolution when using realistic trackers. Regarding the RSP, three algorithms (DR, DD and BTF) show a mean relative error inside the inserts about 0.1%. As the DR and BTF methods are more computationally expensive, the DD-which allows the same spatial resolution in realistic conditions and the same accuracy-and the DBP-which has a fairly good accuracy (<0.2%) and allows reconstruction from truncated data-can be used for a reduced reconstruction time.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Protons , Tomography, X-Ray Computed , Nonlinear Dynamics , Phantoms, Imaging
2.
Phys Med Biol ; 64(6): 065003, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30695753

ABSTRACT

The use of a most likely path (MLP) formalism for protons to account for the effects of multiple Coulomb scattering has improved the spatial resolution in proton computed tomography (pCT). However, this formalism assumes a homogeneous medium and a continuous scattering of protons. In this paper, we quantify the path prediction error induced by transverse heterogeneities to assess whether correcting for such errors might improve the spatial resolution of pCT. To this end, we have tracked protons trajectories using Monte Carlo simulations in several phantoms with different heterogeneities. Our results show that transverse heterogeneities induce non Gaussian spatial distributions leading to errors in the prediction of the MLP, reaching 0.4 mm in a 20 cm wide simulated heterogeneity and 0.13 mm in a realistic phantom. It was also shown that when the spatial distributions have more than one peak, a most likely path, if any, has yet to be defined. Transverse heterogeneities also affect energy profiles, which could explain some of the artifacts described in other works and could make the energy cuts usually performed to exclude nuclear events less efficient.


Subject(s)
Monte Carlo Method , Phantoms, Imaging , Protons , Tomography, X-Ray Computed/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...