Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pol J Microbiol ; 73(2): 131-142, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38700908

ABSTRACT

This study aimed to investigate azole resistance mechanisms in Aspergillus flavus, which involve cyp51A and cyp51B genes. Real-time Reverse Transcriptase qPCR method was applied to determine the overexpression of cyp51A and cyp51B genes for 34 A. flavus isolates. PCR sequencing of these two genes was used to detect the presence of gene mutations. Susceptibility test found sensitivity to voriconazole (VOR) in all strains. 14.7% and 8.8% of isolates were resistant to itraconazole (IT) and posaconazole (POS), respectively, with a cross-resistance in 5.8%. For the double resistant isolates (IT/POS), the expression of cyp51A was up to 17-fold higher. PCR sequencing showed the presence of 2 mutations in cyp51A: a synonymous point mutation (P61P) in eight isolates, which did not affect the structure of CYP51A protein, and another non synonymous mutation (G206L) for only the TN-33 strain (cross IT/POS resistance) causing an amino acid change in the protein sequence. However, we noted in cyp51B the presence of the only non-synonymous mutation (L177G) causing a change in amino acids in the protein sequence for the TN-31 strain, which exhibits IT/POS cross-resistance. A short single intron of 67 bp was identified in the cyp51A gene, whereas three short introns of 54, 53, and 160 bp were identified in the cyp51B gene. According to the models provided by PatchDock software, the presence of non-synonymous mutations did not affect the interaction of CYP51A and CYP51B proteins with antifungals. In our study, the overexpression of the cyp51A and cyp51B genes is the primary mechanism responsible for resistance in A. flavus collection. Nevertheless, other resistance mechanisms can be involved.


Subject(s)
Antifungal Agents , Aspergillus flavus , Azoles , Cytochrome P-450 Enzyme System , Drug Resistance, Fungal , Fungal Proteins , Microbial Sensitivity Tests , Aspergillus flavus/genetics , Aspergillus flavus/drug effects , Fungal Proteins/genetics , Fungal Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Azoles/pharmacology , Humans , Aspergillosis/microbiology , Mutation , Voriconazole/pharmacology , Triazoles/pharmacology
2.
Pol J Microbiol ; 71(4): 529-538, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36473111

ABSTRACT

Seventy-seven strains of Malassezia were included in this study. Biofilm and hydrolytic enzyme production were studied by using specific solid media. The Real-Time reverse transcriptase qPCR method was applied to determine the overexpression of genes encoding the extracellular enzymes. All included Malassezia species produced biofilms. No statistically significant difference was observed between Malassezia species in biofilm formation (p = 0.567). All Malassezia species produced lipase, and 95% of Malassezia globosa showed a strong enzymatic activity (Pz = 0.55 ± 0.02). A statistically significant difference was observed between the mean keratinase indices of Malassezia slooffiae and the other Malassezia species (p = 0.005). The overexpression of one or more genes was observed in 100% of strains isolated from patients with folliculitis, 87.5% - with pityriasis versicolor, and 57.14% of the control group isolates. A statistically significant difference in the lipase gene expression (p = 0.042) was between the strains from patients with folliculitis and the control group. This investigation provides more information about the frequency of the production of the major enzymes considered virulence factors of Malassezia species. Interestingly, the overexpression of one or more genes was observed in strains isolated from patients with Malassezia disorders.


Subject(s)
Folliculitis , Malassezia , Tinea Versicolor , Humans , Malassezia/genetics , Virulence Factors , Lipase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...