Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(25): 37663-37680, 2024 May.
Article in English | MEDLINE | ID: mdl-38780849

ABSTRACT

Improving energy content and hydrophobic nature of woody biomass can be pursued through torrefaction. This gives torrefied biomass with a low bulk density, potentially increasing storage and transport costs. To overcome this issue, densifying the torrefied biomass is necessary. However, poor binding of particles makes densification challenging without using a binder. Therefore, the aim of this study was to investigate the physicochemical characteristics and techno-economic aspects of torrefied rubberwood biomass (TRWB) when pelletized using various cassava-based binders at different blending ratios. The selected binders included cassava starch (CS), cassava pulp (CP), and cassava chip (CC). Each binder at 5%, 10%, or 15% (wt.) was mixed with TRWB and water before pelletizing using a flat die machine. The results revealed that pelletizing TRWB with different cassava-based binders at various blending ratios influenced the physicochemical characteristics of the TRWB pellets, particularly dimensions, bulk density, fuel and atomic ratios, and energy content. The TRWB pellets demonstrated energy densities in the range of 7.95-11.39 GJ/m3, and their mechanical durability and fine content fell within acceptable ranges. The TRWB pellets maintained their shape during 120 min of water soaking, with water absorption levels varying by binder dose. The pelletizing ability, material, and energy costs of TRWB pellets depend on binder type and dose. CP can be applied as a binder for pelletizing torrefied rubberwood biomass. However, the mechanical durability of the product needs to be above the user requirement or standard.


Subject(s)
Biomass , Manihot , Wood , Manihot/chemistry , Wood/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...