Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(24): e2201660, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35754312

ABSTRACT

The high-frequency and low-voltage operation of organic thin-film transistors (OTFTs) is a key requirement for the commercial success of flexible electronics. Significant progress has been achieved in this regard by several research groups highlighting the potential of OTFTs to operate at several tens or even above 100 MHz. However, technology maturity, including scalability, integrability, and device reliability, is another crucial point for the semiconductor industry to bring OTFT-based flexible electronics into mass production. These requirements are often not met by high-frequency OTFTs reported in the literature as unconventional processes, such as shadow-mask patterning or alignment with unrealistic tolerances for production, are used. Here, ultra-short channel vertical organic field-effect transistors (VOFETs) with a unity current gain cut-off frequency (fT ) up to 43.2 MHz (or 4.4 MHz V-1 ) operating below 10 V are shown. Using state-of-the-art manufacturing techniques such as photolithography with reliable fabrication procedures, the integration of such devices down to the size of only 12 × 6 µm2 is shown, which is important for the adaption of this technology in high-density circuits (e.g., display driving). The intrinsic channel transconductance is analyzed and demonstrates that the frequencies up to 430 MHz can be reached if the parasitic electrode overlap is minimized.

2.
Sci Rep ; 10(1): 6473, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32277093

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 8(1): 7643, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29769651

ABSTRACT

Organic/polymer transistors can enable the fabrication of large-area flexible circuits. However, these devices are inherently temperature sensitive due to the strong temperature dependence of charge carrier mobility, suffer from low thermal conductivity of plastic substrates, and are slow due to the low mobility and long channel length (L). Here we report a new, advanced characterization circuit that within around ten microseconds simultaneously applies an accurate large-signal pulse bias and a small-signal sinusoidal excitation to the transistor and measures many high-frequency parameters. This significantly reduces the self-heating and therefore provides data at a known junction temperature more accurate for fitting model parameters to the results, enables small-signal characterization over >10 times wider bias I-V range, with ~105 times less bias-stress effects. Fully thermally-evaporated vertical permeable-base transistors with physical L = 200 nm fabricated using C60 fullerene semiconductor are characterized. Intrinsic gain up to 35 dB, and record transit frequency (unity current-gain cutoff frequency, fT) of 40 MHz at 8.6 V are achieved. Interestingly, no saturation in fT - I and transconductance (gm - I) is observed at high currents. This paves the way for the integration of high-frequency functionalities into organic circuits, such as long-distance wireless communication and switching power converters.

4.
Sci Rep ; 7: 44713, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28303924

ABSTRACT

In spite of interesting features as flexibility, organic thin-film transistors have commercially lagged behind due to the low mobilities of organic semiconductors associated with hopping transport. Furthermore, organic transistors usually have much larger channel lengths than their inorganic counterparts since high-resolution structuring is not available in low-cost production schemes. Here, we present an organic permeable-base transistor (OPBT) which, despite extremely simple processing without any high-resolution structuring, achieve a performance beyond what has so far been possible using organic semiconductors. With current densities above 1 kA cm-2 and switching speeds towards 100 MHz, they open the field of organic power electronics. Finding the physical limits and an effective mobility of only 0.06 cm2 V-1 s-1, this OPBT device architecture has much more potential if new materials optimized for its geometry will be developed.

5.
Adv Mater ; 27(47): 7734-9, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26484500

ABSTRACT

An optimized vertical organic permeable-base transistor (OPBT) competing with the best organic field-effect transistors in performance, while employing low-cost fabrication techniques, is presented. The OPBT stands out by its excellent power efficiency at the highest frequencies.

SELECTION OF CITATIONS
SEARCH DETAIL
...