Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854023

ABSTRACT

Huntington's disease (HD) is caused by expansion of the polyglutamine stretch in huntingtin protein (HTT) resulting in hallmark aggresomes/inclusion bodies (IBs) composed of mutant huntingtin protein (mHTT) and its fragments. Stimulating autophagy to enhance mHTT clearance is considered a potential therapeutic strategy for HD. Our recent evaluation of the autophagic-lysosomal pathway (ALP) in human HD brain reveals upregulated lysosomal biogenesis and relatively normal autophagy flux in early Vonsattel grade brains, but impaired autolysosome clearance in late grade brains, suggesting that autophagy stimulation could have therapeutic benefits as an earlier clinical intervention. Here, we tested this hypothesis by crossing the Q175 HD knock-in model with our autophagy reporter mouse TRGL ( T hy-1- R FP- G FP- L C3) to investigate in vivo neuronal ALP dynamics. In the Q175 and/or TRGL/Q175 mice, mHTT was detected in autophagic vacuoles and also exhibited high level colocalization with autophagy receptors p62/SQSTM1 and ubiquitin in the IBs. Compared to the robust lysosomal pathology in late-stage human HD striatum, ALP alterations in Q175 models are also late-onset but milder that included a lowered phospho-p70S6K level, lysosome depletion and autolysosome elevation including more poorly acidified autolysosomes and larger-sized lipofuscin granules, reflecting impaired autophagic flux. Administration of a mTOR inhibitor to 6-mo-old TRGL/Q175 normalized lysosome number, ameliorated aggresome pathology while reducing mHTT-, p62- and ubiquitin-immunoreactivities, suggesting beneficial potential of autophagy modulation at early stages of disease progression.

2.
J Med Chem ; 66(18): 13205-13246, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37712656

ABSTRACT

Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. We report the design of a series of HTT pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of HTT mRNA transcripts and protein levels. The starting benzamide core was modified to pyrazine amide and further optimized to give a potent, CNS-penetrant, and orally bioavailable HTT-splicing modulator 27. This compound reduced canonical splicing of the HTT RNA exon 49-50 and demonstrated significant HTT-lowering in both human HD stem cells and mouse BACHD models. Compound 27 is a structurally diverse HTT-splicing modulator that may help understand the mechanism of adverse effects such as peripheral neuropathy associated with branaplam.

3.
J Nucl Med ; 64(10): 1581-1587, 2023 10.
Article in English | MEDLINE | ID: mdl-37591545

ABSTRACT

Huntington disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (CAG) trinucleotide expansion in the huntingtin (HTT) gene that encodes the mutant huntingtin protein (mHTT). Visualization and quantification of cerebral mHTT will provide a proxy for target engagement and a means to evaluate therapeutic interventions aimed at lowering mHTT in the brain. Here, we validated the novel radioligand 11C-labeled 6-(5-((5-methoxypyridin-2-yl)methoxy)benzo[d]oxazol-2-yl)-2-methylpyridazin-3(2H)-one (11C-CHDI-180R) using PET imaging to quantify cerebral mHTT aggregates in a macaque model of HD. Methods: Rhesus macaques received MRI-guided intrastriatal delivery of a mixture of AAV2 and AAV2.retro viral vectors expressing an HTT fragment bearing 85 CAG repeats (85Q, n = 5), a control HTT fragment bearing 10 CAG repeats (10Q, n = 4), or vector diluent only (phosphate-buffered saline, n = 5). Thirty months after surgery, 90-min dynamic PET/CT imaging was used to investigate 11C-CHDI-180R brain kinetics, along with serial blood sampling to measure input function and stability of the radioligand. The total volume of distribution was calculated using a 2-tissue-compartment model as well as Logan graphical analysis for regional quantification. Immunostaining for mHTT was performed to corroborate the in vivo findings. Results: 11C-CHDI-180R displayed good metabolic stability (51.4% ± 4.0% parent in plasma at 60 min after injection). Regional time-activity curves displayed rapid uptake and reversible binding, which were described by a 2-tissue-compartment model. Logan graphical analysis was associated with the 2-tissue-compartment model (r 2 = 0.96, P < 0.0001) and used to generate parametric volume of distribution maps. Compared with controls, animals administered the 85Q fragment exhibited significantly increased 11C-CHDI-180R binding in several cortical and subcortical brain regions (group effect, P < 0.0001). No difference in 11C-CHDI-180R binding was observed between buffer and 10Q animals. The presence of mHTT aggregates in the 85Q animals was confirmed histologically. Conclusion: We validated 11C-CHDI-180R as a radioligand to visualize and quantify mHTT aggregated species in a HD macaque model. These findings corroborate our previous work in rodent HD models and show that 11C-CHDI-180R is a promising tool to assess the mHTT aggregate load and the efficacy of therapeutic strategies.


Subject(s)
Huntington Disease , Animals , Huntington Disease/metabolism , Huntingtin Protein/genetics , Positron Emission Tomography Computed Tomography , Macaca mulatta/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Positron-Emission Tomography , Disease Models, Animal
4.
Bioanalysis ; 15(11): 637-651, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37170582

ABSTRACT

Background: Dysregulation of the kynurenine metabolic pathway has been reported in several neurological conditions. Methods & results: Sensitive and selective LC-MS/MS methods have been validated for six kynurenine pathway metabolites in human cerebrospinal fluid and plasma. For each matrix, we validated three methods - one for the simultaneous determination of kynurenine, kynurenic acid, anthranilic acid and 3-hydroxy-kynurenine (four-analyte assay), one for quinolinic acid and one for tryptophan - using stable-isotopically labeled internal standards. The dynamic range and quantitation limits were based on endogenous concentrations for each analyte. Conclusion: The use of validated methods for kynurenine pathway metabolites in human cerebrospinal fluid and plasma will provide definitive information in neurological diseases.


Subject(s)
Kynurenine , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Tryptophan , Plasma/metabolism , Quinolinic Acid/cerebrospinal fluid
5.
J Med Chem ; 66(1): 641-656, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36548390

ABSTRACT

Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.


Subject(s)
Huntington Disease , Positron-Emission Tomography , Animals , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Ligands , Positron-Emission Tomography/methods , Huntington Disease/diagnostic imaging , Huntington Disease/drug therapy , Brain/diagnostic imaging , Brain/metabolism
6.
JCI Insight ; 7(20)2022 10 24.
Article in English | MEDLINE | ID: mdl-36278490

ABSTRACT

We have developed an inducible Huntington's disease (HD) mouse model that allows temporal control of whole-body allele-specific mutant huntingtin (mHtt) expression. We asked whether moderate global lowering of mHtt (~50%) was sufficient for long-term amelioration of HD-related deficits and, if so, whether early mHtt lowering (before measurable deficits) was required. Both early and late mHtt lowering delayed behavioral dysfunction and mHTT protein aggregation, as measured biochemically. However, long-term follow-up revealed that the benefits, in all mHtt-lowering groups, attenuated by 12 months of age. While early mHtt lowering attenuated cortical and striatal transcriptional dysregulation evaluated at 6 months of age, the benefits diminished by 12 months of age, and late mHtt lowering did not ameliorate striatal transcriptional dysregulation at 12 months of age. Only early mHtt lowering delayed the elevation in cerebrospinal fluid neurofilament light chain that we observed in our model starting at 9 months of age. As small-molecule HTT-lowering therapeutics progress to the clinic, our findings suggest that moderate mHtt lowering allows disease progression to continue, albeit at a slower rate, and could be relevant to the degree of mHTT lowering required to sustain long-term benefits in humans.


Subject(s)
Huntington Disease , Mice , Humans , Animals , Infant , Huntington Disease/drug therapy , Huntington Disease/genetics , Protein Aggregates , Huntingtin Protein/genetics , Huntingtin Protein/cerebrospinal fluid , Disease Models, Animal , Corpus Striatum/metabolism , Disease Progression
7.
Eur J Nucl Med Mol Imaging ; 50(1): 48-60, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36001116

ABSTRACT

PURPOSE: Huntington's disease is caused by a trinucleotide expansion in the HTT gene, which leads to aggregation of mutant huntingtin (mHTT) protein in the brain and neurotoxicity. Direct in vivo measurement of mHTT aggregates in human brain parenchyma is not yet possible. In this first-in-human study, we investigated biodistribution and dosimetry in healthy volunteers of [11C]CHDI-00485180-R ([11C]CHDI-180R) and [11C]CHDI-00485626 ([11C]CHDI-626), two tracers designed for PET imaging of aggregated mHTT in the brain that have been validated in preclinical models. METHODS: Biodistribution and radiation dosimetry studies were performed in 3 healthy volunteers (age 25.7 ± 0.5 years; 2 F) for [11C]CHDI-180R and in 3 healthy volunteers (age 35.3 ± 6.8 years; 2 F) for [11C]CHDI-626 using sequential whole-body PET-CT. Source organs were delineated in 3D using combined PET and CT data. Individual organ doses and effective doses were determined using OLINDA 2.1. RESULTS: There were no clinically relevant adverse events. The mean effective dose (ED) for [11C]CHDI-180R was 4.58 ± 0.65 µSv/MBq, with highest absorbed doses for liver (16.9 µGy/MBq), heart wall (15.9 µGy/MBq) and small intestine (15.8 µGy/MBq). Mean ED for [11C]CHDI-626 was 5.09 ± 0.06 µSv/MBq with the highest absorbed doses for the gallbladder (26.5 µGy/MBq), small intestine (20.4 µGy/MBq) and liver (19.6 µGy/MBq). Decay-corrected brain uptake curves showed promising kinetics for [11C]CHDI-180R, but for [11C]CHDI-626 an increasing signal over time was found, probably due to accumulation of a brain-penetrant metabolite. CONCLUSION: [11C]CHDI-180R and [11C]CHDI-626 are safe for in vivo PET imaging in humans. The estimated radiation burden is in line with most 11C-ligands. While [11C]CHDI-180R has promising kinetic properties in the brain, [11C]CHDI-626 is not suitable for human in vivo mHTT PET due to the possibility of a radiometabolite accumulating in brain parenchyma. TRIAL REGISTRATION: EudraCT number 2020-002129-27. CLINICALTRIALS: gov NCT05224115 (retrospectively registered).


Subject(s)
Positron Emission Tomography Computed Tomography , Radiometry , Humans , Adult , Healthy Volunteers , Tissue Distribution , Positron-Emission Tomography/methods
8.
Int J Mol Sci ; 23(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35887162

ABSTRACT

While blood-brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington's disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.


Subject(s)
Huntington Disease , Induced Pluripotent Stem Cells , Animals , Blood-Brain Barrier/physiology , Cell Differentiation , Endothelial Cells/physiology , Humans , Induced Pluripotent Stem Cells/physiology , Mice
9.
Sci Transl Med ; 14(630): eabm3682, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35108063

ABSTRACT

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin (HTT) gene that encodes the pathologic mutant HTT (mHTT) protein with an expanded polyglutamine (polyQ) tract. Whereas several therapeutic programs targeting mHTT expression have advanced to clinical evaluation, methods to visualize mHTT protein species in the living brain are lacking. Here, we demonstrate the development and characterization of a positron emission tomography (PET) imaging radioligand with high affinity and selectivity for mHTT aggregates. This small molecule radiolabeled with 11C ([11C]CHDI-180R) allowed noninvasive monitoring of mHTT pathology in the brain and could track region- and time-dependent suppression of mHTT in response to therapeutic interventions targeting mHTT expression in a rodent model. We further showed that in these animals, therapeutic agents that lowered mHTT in the striatum had a functional restorative effect that could be measured by preservation of striatal imaging markers, enabling a translational path to assess the functional effect of mHTT lowering.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Animals , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/diagnostic imaging , Huntington Disease/genetics , Huntington Disease/metabolism , Ligands , Neurodegenerative Diseases/pathology
10.
Eur J Nucl Med Mol Imaging ; 49(4): 1166-1175, 2022 03.
Article in English | MEDLINE | ID: mdl-34651228

ABSTRACT

PURPOSE: As several therapies aimed at lowering mutant huntingtin (mHTT) brain levels in Huntington's disease (HD) are currently being investigated, noninvasive positron emission tomography (PET) imaging of mHTT could be utilized to directly evaluate therapeutic efficacy and monitor disease progression. Here we characterized and longitudinally assessed the novel radioligand [11C]CHDI-626 for mHTT PET imaging in the zQ175DN mouse model of HD. METHODS: After evaluating radiometabolites and radioligand kinetics, we conducted longitudinal dynamic PET imaging at 3, 6, 9, and 13 months of age (M) in wild-type (WT, n = 17) and heterozygous (HET, n = 23) zQ175DN mice. Statistical analysis was performed to evaluate temporal and genotypic differences. Cross-sectional cohorts at each longitudinal time point were included for post-mortem [3H]CHDI-626 autoradiography. RESULTS: Despite fast metabolism and kinetics, the radioligand was suitable for PET imaging of mHTT. Longitudinal quantification could discriminate between genotypes already at premanifest stage (3 M), showing an age-associated increase in signal in HET mice in parallel with mHTT aggregate load progression, as supported by the post-mortem [3H]CHDI-626 autoradiography. CONCLUSION: With clinical evaluation underway, [11C]CHDI-626 PET imaging appears to be a suitable preclinical candidate marker to monitor natural HD progression and for the evaluation of mHTT-lowering therapies.


Subject(s)
Huntington Disease , Animals , Carbon Radioisotopes , Cross-Sectional Studies , Disease Models, Animal , Humans , Huntington Disease/metabolism , Mice , Positron-Emission Tomography/methods
11.
Sci Rep ; 11(1): 17977, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504195

ABSTRACT

Huntington's disease (HD) is caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin (HTT) gene coding for the huntingtin (HTT) protein. The misfolding and consequential aggregation of CAG-expanded mutant HTT (mHTT) underpin HD pathology. Our interest in the life cycle of HTT led us to consider the development of high-affinity small-molecule binders of HTT oligomerized/amyloid-containing species that could serve as either cellular and in vivo imaging tools or potential therapeutic agents. We recently reported the development of PET tracers CHDI-180 and CHDI-626 as suitable for imaging mHTT aggregates, and here we present an in-depth pharmacological investigation of their binding characteristics. We have implemented an array of in vitro and ex vivo radiometric binding assays using recombinant HTT, brain homogenate-derived HTT aggregates, and brain sections from mouse HD models and humans post-mortem to investigate binding affinities and selectivity against other pathological proteins from indications such as Alzheimer's disease and spinocerebellar ataxia 1. Radioligand binding assays and autoradiography studies using brain homogenates and tissue sections from HD mouse models showed that CHDI-180 and CHDI-626 specifically bind mHTT aggregates that accumulate with age and disease progression. Finally, we characterized CHDI-180 and CHDI-626 regarding their off-target selectivity and binding affinity to beta amyloid plaques in brain sections and homogenates from Alzheimer's disease patients.


Subject(s)
Huntingtin Protein/metabolism , Huntington Disease/metabolism , Positron-Emission Tomography/methods , Protein Aggregates/genetics , Protein Aggregation, Pathological/diagnostic imaging , Radiopharmaceuticals/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Autoradiography/methods , Brain/metabolism , Disease Models, Animal , Humans , Huntingtin Protein/genetics , Huntington Disease/pathology , Immunohistochemistry/methods , Mice , Mice, Transgenic , Nitrogen Radioisotopes/metabolism , Radioactive Tracers , Radioligand Assay/methods , Recombinant Proteins/metabolism
12.
Xenobiotica ; 51(10): 1155-1180, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34496722

ABSTRACT

The disposition of a novel kynurenine monooxygenase inhibitor, CHDI-340246, was investigated in vitro and in animals.In vitro, there was minimal metabolic turnover of CHDI-340246 in all species. The protein binding was higher in human plasma (99.7%) relative to other species.In all species, blood clearance was low (<20% of liver blood flow) and volume of distribution was small (<0.5 L/kg). The terminal half-life was longer in monkeys (9 hr) than in mice, rats, or dogs (1-2 hr). CHDI-340246 was orally bioavailable (>60%) in all species.In rats, [14C]CHDI-340246 showed wide distribution of radioactivity in all tissues except brain and testes. In rats, the parent drug was the major circulating moiety with minor amounts of a sulphate conjugate of an O-dealkylated metabolite. The elimination occurred via the urinary route and to a lesser extent by biliary route, but mostly as metabolites. In cynomolgus monkeys, the parent drug predominated in plasma with only trace amounts of metabolites detected.Acyl glucuronide conjugate of CHDI-340246 was not detected in plasma of rats or monkeys.Overall, the ADME profile of CHDI-340246 was favourable in rats and monkeys for potential evaluation of KMO inhibition in humans.


Subject(s)
Kynurenine , Pyrimidines , Animals , Animals, Laboratory , Dogs , Mice , Mixed Function Oxygenases , Rats , Species Specificity
13.
J Med Chem ; 64(16): 12003-12021, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34351166

ABSTRACT

The expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain. These ligands are potentially useful imaging biomarkers for HD therapeutic development in both preclinical and clinical settings. We describe here the optimization of the benzo[4,5]imidazo[1,2-a]pyrimidine series that show selective binding to mHTT aggregates over Aß- and/or tau-aggregates associated with Alzheimer's disease pathology. Compound [11C]-2 was selected as a clinical candidate based on its high free fraction in the brain, specific binding in the HD mouse model, and rapid brain uptake/washout in nonhuman primate positron emission tomography imaging studies.


Subject(s)
Brain/diagnostic imaging , Heterocyclic Compounds, 3-Ring/chemistry , Huntingtin Protein/metabolism , Protein Aggregates/physiology , Pyridines/chemistry , Radiopharmaceuticals/chemistry , Alzheimer Disease , Animals , Biomarkers/metabolism , Brain/metabolism , Carbon Radioisotopes/chemistry , Female , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Macaca fascicularis , Male , Mice, Inbred C57BL , Molecular Structure , Positron-Emission Tomography , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity Relationship
14.
J Med Chem ; 63(15): 8608-8633, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32662649

ABSTRACT

Mutant huntingtin (mHTT) protein carrying the elongated N-terminal polyglutamine (polyQ) tract misfolds and forms protein aggregates characteristic of Huntington's disease (HD) pathology. A high-affinity ligand specific for mHTT aggregates could serve as a positron emission tomography (PET) imaging biomarker for HD therapeutic development and disease progression. To identify such compounds with binding affinity for polyQ aggregates, we embarked on systematic structural activity studies; lead optimization of aggregate-binding affinity, unbound fractions in brain, permeability, and low efflux culminated in the discovery of compound 1, which exhibited target engagement in autoradiography (ARG) studies in brain slices from HD mouse models and postmortem human HD samples. PET imaging studies with 11C-labeled 1 in both HD mice and WT nonhuman primates (NHPs) demonstrated that the right-hand-side labeled ligand [11C]-1R (CHDI-180R) is a suitable PET tracer for imaging of mHTT aggregates. [11C]-1R is now being advanced to human trials as a first-in-class HD PET radiotracer.


Subject(s)
Huntingtin Protein/analysis , Huntington Disease/diagnostic imaging , Positron-Emission Tomography/methods , Protein Aggregation, Pathological/diagnostic imaging , Animals , Disease Models, Animal , Dogs , Female , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Ligands , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred C57BL , Mutation , Peptides/genetics , Protein Aggregation, Pathological/genetics , Radiopharmaceuticals/analysis , Rats, Sprague-Dawley
15.
Cells ; 9(4)2020 04 16.
Article in English | MEDLINE | ID: mdl-32316221

ABSTRACT

The blood-brain barrier (BBB) is responsible for the homeostasis between the cerebral vasculature and the brain and it has a key role in regulating the influx and efflux of substances, in healthy and diseased states. Stem cell technology offers the opportunity to use human brain-specific cells to establish in vitro BBB models. Here, we describe the establishment of a human BBB model in a two-dimensional monolayer culture, derived from human induced pluripotent stem cells (hiPSCs). This model was characterized by a transendothelial electrical resistance (TEER) higher than 2000 Ω∙cm2 and associated with negligible paracellular transport. The hiPSC-derived BBB model maintained the functionality of major endothelial transporter proteins and receptors. Some proprietary molecules from our central nervous system (CNS) programs were evaluated revealing comparable permeability in the human model and in the model from primary porcine brain endothelial cells (PBECs).


Subject(s)
Biological Transport/drug effects , Blood-Brain Barrier/cytology , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Animals , Astrocytes/metabolism , Biological Transport/physiology , Brain/cytology , Cell Differentiation/physiology , Cells, Cultured , Central Nervous System/chemistry , Central Nervous System/metabolism , Cryopreservation/methods , Humans , Immunohistochemistry , Permeability , Swine
16.
J Immunol ; 203(4): 899-910, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31285277

ABSTRACT

The kynurenine pathway (KP) is a key regulator of many important physiological processes and plays a harmful role in cancer, many neurologic conditions, and chronic viral infections. In HIV infection, KP activity is consistently associated with reduced CD4 T cell counts and elevated levels of T cell activation and viral load; it also independently predicts mortality and morbidity from non-AIDS events. Kynurenine 3-monooxygenase (KMO) is a therapeutically important target in the KP. Using the nonhuman primate model of SIV infection in rhesus macaques, we investigated whether KMO inhibition could slow the course of disease progression. We used a KMO inhibitor, CHDI-340246, to perturb the KP during early acute infection and followed the animals for 1 y to assess clinical outcomes and immune phenotype and function during pre-combination antiretroviral therapy acute infection and combination antiretroviral therapy-treated chronic infection. Inhibition of KMO in acute SIV infection disrupted the KP and prevented SIV-induced increases in downstream metabolites, improving clinical outcome as measured by both increased CD4+ T cell counts and body weight. KMO inhibition increased naive T cell frequency and lowered PD-1 expression in naive and memory T cell subsets. Importantly, early PD-1 expression during acute SIV infection predicted clinical outcomes of body weight and CD4+ T cell counts. Our data indicate that KMO inhibition in early acute SIV infection provides clinical benefit and suggest a rationale for testing KMO inhibition as an adjunctive treatment in SIV/HIV infection to slow the progression of the disease and improve immune reconstitution.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Programmed Cell Death 1 Receptor/biosynthesis , Pyrimidines/pharmacology , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , Anti-Retroviral Agents/pharmacology , Body Weight/drug effects , CD4-Positive T-Lymphocytes/drug effects , Enzyme Inhibitors/pharmacology , Macaca mulatta , Programmed Cell Death 1 Receptor/drug effects , Simian Acquired Immunodeficiency Syndrome/metabolism
17.
Mol Pharm ; 16(5): 2069-2082, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30916978

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the huntingtin protein. For drug candidates targeting HD, the ability to cross the blood-brain barrier (BBB) and reach the site of action in the central nervous system (CNS) is crucial for achieving pharmacological activity. To assess the permeability of selected compounds across the BBB, we utilized a two-dimensional model composed of primary porcine brain endothelial cells and rat astrocytes. Our objective was to use this in vitro model to rank and prioritize compounds for in vivo pharmacokinetic and brain penetration studies. The model was first characterized using a set of validation markers chosen based on their functional importance at the BBB. It was shown to fulfill the major BBB characteristics, including functional tight junctions, high transendothelial electrical resistance, expression, and activity of influx and efflux transporters. The in vitro permeability of 54 structurally diverse known compounds was determined and shown to have a good correlation with the in situ brain perfusion data in rodents. We used this model to investigate the BBB permeability of a series of new HD compounds from different chemical classes, and we found a good correlation with in vivo brain permeation, demonstrating the usefulness of the in vitro model for optimizing CNS drug properties and for guiding the selection of lead compounds in a drug discovery setting.


Subject(s)
Blood-Brain Barrier/metabolism , Central Nervous System Agents/therapeutic use , Drug Discovery/methods , Huntington Disease/drug therapy , Models, Biological , ATP-Binding Cassette Transporters/metabolism , Animals , Astrocytes/metabolism , Capillary Permeability/physiology , Cells, Cultured , Cerebral Cortex/cytology , Coculture Techniques , Electric Impedance , Endothelial Cells/metabolism , Permeability , Rats , Rats, Sprague-Dawley , Solute Carrier Proteins/metabolism , Swine , Tight Junctions/metabolism
18.
Exp Neurol ; 282: 99-118, 2016 08.
Article in English | MEDLINE | ID: mdl-27163548

ABSTRACT

Dysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is controlled by the activity of kynurenine mono-oxygenase (KMO), an enzyme which catalyzes the synthesis of 3-OH-Kyn from Kyn. In order to determine the role of KMO in the phenotype of mouse models of HD, we have developed a potent and selective KMO inhibitor termed CHDI-340246. We show that this compound, when administered orally to transgenic mouse models of HD, potently and dose-dependently modulates the Kyn pathway in peripheral tissues and in the central nervous system. The administration of CHDI-340246 leads to an inhibition of the formation of 3-OH-Kyn and Quin, and to an elevation of Kyn and Kynurenic acid (KynA) levels in brain tissues. We show that administration of CHDI-340246 or of Kyn and of KynA can restore several electrophysiological alterations in mouse models of HD, both acutely and after chronic administration. However, using a comprehensive panel of behavioral tests, we demonstrate that the chronic dosing of a selective KMO inhibitor does not significantly modify behavioral phenotypes or natural progression in mouse models of HD.


Subject(s)
Electrophysiological Phenomena/drug effects , Enzyme Inhibitors/therapeutic use , Huntington Disease/drug therapy , Huntington Disease/physiopathology , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Pyrimidines/therapeutic use , Analysis of Variance , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Electric Stimulation , Electrophysiological Phenomena/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Hippocampus/drug effects , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , In Vitro Techniques , Kynurenic Acid/metabolism , Kynurenine 3-Monooxygenase/metabolism , Male , Mice , Mice, Transgenic , Microdialysis , Pyrimidines/chemistry , Pyrimidines/metabolism , Pyrimidines/pharmacology , Quinolinic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Transfection , Trinucleotide Repeats/genetics , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...