Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 19(11): 3795-3805, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36098508

ABSTRACT

Multiple sclerosis (MS) is one of the most common neurodegenerative diseases in young adults, with early clinical symptoms seen in the central nervous system (CNS) myelin sheaths due to an attack caused by the patient's immune system. Activation of the immune system is mediated by the induction of an antigen-specific immune response involving the interaction of multiple T-cell types with antigen-presenting cells (APCs), such as dendritic cells (DCs). Antigen-specific therapeutic approaches focus on immune cells and autoantigens involved in the onset of disease symptoms, which are the main components of myelin proteins. The ability of such therapeutics to bind strongly to DCs could lead to immune system tolerance to the disease. Many modern approaches are based on peptide-based research, as, in recent years, they have been of particular interest in the development of new pharmaceuticals. The characteristics of peptides, such as short lifespan in the body and rapid hydrolysis, can be overcome by their entrapment in nanospheres, providing better pharmacokinetics and bioavailability. The present study describes the development of polymeric nanoparticles with encapsulated myelin peptide analogues involved in the development of MS, along with their biological evaluation as inhibitors of MS development and progression. In particular, particles of poly(lactic-co-glycolic) acid (PLGA) loaded with peptides based on mouse/rat (rMOG) epitope 35-55 of myelin oligodendrocyte glycoprotein (MOG) conjugated with saccharide residues were developed. More specifically, the MOG35-55 peptide was conjugated with glucosamine to promote the interaction with mannose receptors (MRs) expressed by DCs. In addition, a study of slow release (dissolution) and quantification on both initially encapsulated peptide and daily release in saline in vitro was performed, followed by an evaluation of in vivo activity of the formulation on mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS, using both prophylactic and therapeutic protocols. Our results showed that the therapeutic protocol was effective in reducing EAE clinical scores and inflammation of the central nervous system and could be an alternative and promising approach against MS inducing tolerance against the disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Nanoparticles , Mice , Rats , Animals , Myelin-Oligodendrocyte Glycoprotein/chemistry , Myelin-Oligodendrocyte Glycoprotein/metabolism , Epitopes , Mice, Inbred C57BL , Peptides/therapeutic use , Peptide Fragments
SELECTION OF CITATIONS
SEARCH DETAIL
...