Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 20(1): 349, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34433465

ABSTRACT

BACKGROUND: Malaria still constitutes a major public health menace, especially in tropical and subtropical countries. Close to half a million people mainly children in Africa, die every year from the disease. With the rising resistance to frontline drugs (artemisinin-based combinations), there is a need to accelerate the discovery and development of newer anti-malarial drugs. A systematic review was conducted to identify the African medicinal plants with significant antiplasmodial and/or anti-malarial activity, toxicity, as wells as assessing the variation in their activity between study designs (in vitro and in vivo). METHODS: Key health-related databases including Google Scholar, PubMed, PubMed Central, and Science Direct were searched for relevant literature on the antiplasmodial and anti-malarial activities of African medicinal plants. RESULTS: In total, 200 research articles were identified, a majority of which were studies conducted in Nigeria. The selected research articles constituted 722 independent experiments evaluating 502 plant species. Of the 722 studies, 81.9%, 12.4%, and 5.5% were in vitro, in vivo, and combined in vitro and in vivo, respectively. The most frequently investigated plant species were Azadirachta indica, Zanthoxylum chalybeum, Picrilima nitida, and Nauclea latifolia meanwhile Fabaceae, Euphorbiaceae, Annonaceae, Rubiaceae, Rutaceae, Meliaceae, and Lamiaceae were the most frequently investigated plant families. Overall, 248 (34.3%), 241 (33.4%), and 233 (32.3%) of the studies reported very good, good, and moderate activity, respectively. Alchornea cordifolia, Flueggea virosa, Cryptolepis sanguinolenta, Zanthoxylum chalybeum, and Maytenus senegalensis gave consistently very good activity across the different studies. In all, only 31 (4.3%) of studies involved pure compounds and these had significantly (p = 0.044) higher antiplasmodial activity relative to crude extracts. Out of the 198 plant species tested for toxicity, 52 (26.3%) demonstrated some degree of toxicity, with toxicity most frequently reported with Azadirachta indica and Vernonia amygdalina. These species were equally the most frequently inactive plants reported. The leaves were the most frequently reported toxic part of plants used. Furthermore, toxicity was observed to decrease with increasing antiplasmodial activity. CONCLUSIONS: Although there are many indigenous plants with considerable antiplasmodial and anti-malarial activity, the progress in the development of new anti-malarial drugs from African medicinal plants is still slothful, with only one clinical trial with Cochlospermum planchonii (Bixaceae) conducted to date. There is, therefore, the need to scale up anti-malarial drug discovery in the African region.


Subject(s)
Antimalarials , Plant Extracts , Plants, Medicinal/chemistry , Plasmodium/drug effects , Africa , Animals , Antimalarials/pharmacology , Antimalarials/toxicity , Humans , Malaria/drug therapy , Medicine, African Traditional/statistics & numerical data , Mice , Phytotherapy/statistics & numerical data , Plant Extracts/pharmacology , Plant Extracts/toxicity
2.
Article in English | MEDLINE | ID: mdl-33610966

ABSTRACT

The parasitic diseases represent the most important health risk, especially in underdeveloped countries where they have a deep impact on public health. Trichomoniasis is a prevalent non-viral sexually transmitted disease, and a significant amount of new cases are identified each year globally. Furthermore, the infection is linked with serious concerns such as pregnancy outcomes, infertility, predisposition to cervical and prostate cancer, and increased transmission and acquisition of HIV. The therapy is restricted, adverse effects are often observed, and resistance to the drugs is emerging. Based on this, a new treatment for trichomoniasis is necessary. Natural products represent a rich source of bioactive compounds, and even today, they are used in the search for new drugs. Additionally, natural products provide a wide variety of leadership structures that can be used by the pharmaceutical industry as a template in the development of new drugs that are more effective and have fewer or no undesirable side effects compared to current treatments. This review focuses on the medicinal plants that possess anti-trichomonal activity in vitro or in vivo. An electronic database search was carried out covering the last three decades, i.e., 1990-2020. The literature search revealed that almost a dozen isolated phytoconstituents are being explored globally for their anti-trichomonal activity. Simultaneously, many countries have their own traditional or folk medicine for trichomoniasis that utilizes their native plants, as a whole, or even extracts. This review focuses mainly on the human parasite Trichomonas vaginalis. However, at some points mention is also made to Tritrichomonas foetus that causes trichomoniasis in animals of high veterinary and economical interest. We will focus on the plants and plant-based compounds and their anti-trichomonal activity. The literature search highlighted that there are abundant compounds that possess anti-trichomonal activity; however, in-depth in-vivo evaluation of compounds and their clinical evaluation has not been undertaken. There is a critical need for new anti-trichomonal compounds, and focused research on phytoconstituents can provide the way forward.


Subject(s)
Biological Products , Plants, Medicinal , Trichomonas Infections , Trichomonas vaginalis , Trichomonas , Animals , Humans , Trichomonas Infections/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...