Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37886534

ABSTRACT

The clock drawing test (CDT) is a neuropsychological assessment tool to evaluate a patient's cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing tests (FaIRClocks) to evaluate and mitigate bias against people with lower education while predicting their cognitive status. We represented clock drawings with a 10-dimensional latent embedding using Relevance Factor Variational Autoencoder (RF-VAE) network pretrained on publicly available clock drawings from the National Health and Aging Trends Study (NHATS) dataset. These embeddings were later fine-tuned for predicting three cognitive scores: the Mini-Mental State Examination (MMSE) total score, attention composite z-score (ATT-C), and memory composite z-score (MEM-C). The classifiers were initially tested to see their relative performance in patients with low education (<= 8 years) versus patients with higher education (> 8 years). Results indicated that the initial unweighted classifiers confounded lower education with cognitive impairment, resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve balanced performance. In summary, we report the FaIRClocks model, which a) can identify attention and memory deficits using clock drawings and b) exhibits identical performance between people with higher and lower education levels.

3.
Article in English | MEDLINE | ID: mdl-38585187

ABSTRACT

Delirium is a syndrome of acute brain failure which is prevalent amongst older adults in the Intensive Care Unit (ICU). Incidence of delirium can significantly worsen prognosis and increase mortality, therefore necessitating its rapid and continual assessment in the ICU. Currently, the common approach for delirium assessment is manual and sporadic. Hence, there exists a critical need for a robust and automated system for predicting delirium in the ICU. In this work, we develop a machine learning (ML) system for real-time prediction of delirium using Electronic Health Record (EHR) data. Unlike prior approaches which provide one delirium prediction label per entire ICU stay, our approach provides predictions every 12 hours. We use the latest 12 hours of ICU data, along with patient demographic and medical history data, to predict delirium risk in the next 12-hour window. This enables delirium risk prediction as soon as 12 hours after ICU admission. We train and test four ML classification algorithms on longitudinal EHR data pertaining to 16,327 ICU stays of 13,395 patients covering a total of 56,297 12-hour windows in the ICU to predict the dynamic incidence of delirium. The best performing algorithm was Categorical Boosting which achieved an area under receiver operating characteristic curve (AUROC) of 0.87 (95% Confidence Interval; C.I, 0.86-0.87). The deployment of this ML system in ICUs can enable early identification of delirium, thereby reducing its deleterious impact on long-term adverse outcomes, such as ICU cost, length of stay and mortality.

4.
Front Digit Health ; 4: 1029191, 2022.
Article in English | MEDLINE | ID: mdl-36440460

ABSTRACT

Transformer model architectures have revolutionized the natural language processing (NLP) domain and continue to produce state-of-the-art results in text-based applications. Prior to the emergence of transformers, traditional NLP models such as recurrent and convolutional neural networks demonstrated promising utility for patient-level predictions and health forecasting from longitudinal datasets. However, to our knowledge only few studies have explored transformers for predicting clinical outcomes from electronic health record (EHR) data, and in our estimation, none have adequately derived a health-specific tokenization scheme to fully capture the heterogeneity of EHR systems. In this study, we propose a dynamic method for tokenizing both discrete and continuous patient data, and present a transformer-based classifier utilizing a joint embedding space for integrating disparate temporal patient measurements. We demonstrate the feasibility of our clinical AI framework through multi-task ICU patient acuity estimation, where we simultaneously predict six mortality and readmission outcomes. Our longitudinal EHR tokenization and transformer modeling approaches resulted in more accurate predictions compared with baseline machine learning models, which suggest opportunities for future multimodal data integrations and algorithmic support tools using clinical transformer networks.

5.
J Med Internet Res ; 23(9): e30157, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34449401

ABSTRACT

BACKGROUND: COVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with most individuals contracting mild disease but a substantial minority experiencing fulminant cardiopulmonary symptoms or death. The clinical covariates and the laboratory tests performed on a patient provide robust statistics to guide clinical treatment. Deep learning approaches on a data set of this nature enable patient stratification and provide methods to guide clinical treatment. OBJECTIVE: Here, we report on the development and prospective validation of a state-of-the-art machine learning model to provide mortality prediction shortly after confirmation of SARS-CoV-2 infection in the Mayo Clinic patient population. METHODS: We retrospectively constructed one of the largest reported and most geographically diverse laboratory information system and electronic health record of COVID-19 data sets in the published literature, which included 11,807 patients residing in 41 states of the United States of America and treated at medical sites across 5 states in 3 time zones. Traditional machine learning models were evaluated independently as well as in a stacked learner approach by using AutoGluon, and various recurrent neural network architectures were considered. The traditional machine learning models were implemented using the AutoGluon-Tabular framework, whereas the recurrent neural networks utilized the TensorFlow Keras framework. We trained these models to operate solely using routine laboratory measurements and clinical covariates available within 72 hours of a patient's first positive COVID-19 nucleic acid test result. RESULTS: The GRU-D recurrent neural network achieved peak cross-validation performance with 0.938 (SE 0.004) as the area under the receiver operating characteristic (AUROC) curve. This model retained strong performance by reducing the follow-up time to 12 hours (0.916 [SE 0.005] AUROC), and the leave-one-out feature importance analysis indicated that the most independently valuable features were age, Charlson comorbidity index, minimum oxygen saturation, fibrinogen level, and serum iron level. In the prospective testing cohort, this model provided an AUROC of 0.901 and a statistically significant difference in survival (P<.001, hazard ratio for those predicted to survive, 95% CI 0.043-0.106). CONCLUSIONS: Our deep learning approach using GRU-D provides an alert system to flag mortality for COVID-19-positive patients by using clinical covariates and laboratory values within a 72-hour window after the first positive nucleic acid test result.


Subject(s)
COVID-19 , Clinical Laboratory Information Systems , Deep Learning , Algorithms , Electronic Health Records , Humans , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...