Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(10): 100603, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38518348

ABSTRACT

Measurement is an essential component of quantum algorithms, and for superconducting qubits it is often the most error prone. Here, we demonstrate model-based readout optimization achieving low measurement errors while avoiding detrimental side effects. For simultaneous and midcircuit measurements across 17 qubits, we observe 1.5% error per qubit with a 500 ns end-to-end duration and minimal excess reset error from residual resonator photons. We also suppress measurement-induced state transitions achieving a leakage rate limited by natural heating. This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.

2.
MethodsX ; 5: 1148-1155, 2018.
Article in English | MEDLINE | ID: mdl-30302321

ABSTRACT

Cadmium is a heavy metal toxic that enters water resources through industrial, household, agricultural waste and non-sanitary landfill of urban and industrial wastes. Pollution of water resources by cadmium increases incidence of diseases including Itai-Itai, kidney disorders, cancer, chromosome effects and kidney tubular damages in low exposures. The aim of this study is to study the efficiency of a new poly urea-formaldehyde adsorbent in the removal cadmium ions from aqueous solutions. The effect of different variables such as initial pH, contact time, initial concentration of cadmium and test of real wastewater samples were evaluated. In addition, laboratory data of cadmium adsorption by urea-formaldehyde adsorbent were matched to Langmuir, Freundlich and Temkin isotherm models. The results of the study showed that maximum adsorption capacity obtained by Langmuir model was 76.3 mg/g at pH = 5.5. Laboratory adsorption data matched mostly by Freundlich isotherm model (R2 =0.999) which indicates that adsorption of cadmium ions on heterogenic surfaces of poly urea-formaldehyde happens by chemical adsorption mechanism. Generally, the results of the study showed that new poly urea-formaldehyde adsorbent can be efficiently used to remove highly concentrated cadmium ions from aqueous solutions.

3.
Phys Rev Lett ; 117(19): 190503, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27858439

ABSTRACT

Many superconducting qubit systems use the dispersive interaction between the qubit and a coupled harmonic resonator to perform quantum state measurement. Previous works have found that such measurements can induce state transitions in the qubit if the number of photons in the resonator is too high. We investigate these transitions and find that they can push the qubit out of the two-level subspace, and that they show resonant behavior as a function of photon number. We develop a theory for these observations based on level crossings within the Jaynes-Cummings ladder, with transitions mediated by terms in the Hamiltonian that are typically ignored by the rotating wave approximation. We find that the most important of these terms comes from an unexpected broken symmetry in the qubit potential. We confirm the theory by measuring the photon occupation of the resonator when transitions occur while varying the detuning between the qubit and resonator.

SELECTION OF CITATIONS
SEARCH DETAIL
...