Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Virol Methods ; 324: 114871, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103738

ABSTRACT

Rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected patients is critical for infection control. Loop-mediated isothermal amplification (LAMP) has been demonstrated to be a rapid, simple, reliable, cost-effective and sensitive method to detect SARS-CoV-2 in a variety of samples in considerably less time than Real-Time PCR. In this study, we developed and optimized a rapid detection method for SARS-CoV-2 based on RT-LAMP method utilizing a specific primer set targeting the ORF1a gene and then examined its sensitivity and efficiency using a serially diluted viral RNA sample with a known concentration. Furthermore, the sensitivity of the RT-LAMP to detect SARS-CoV-2 in direct swab samples with varying Ct values were compared to a commercial molecular RT-qPCR based detection kit. According to our findings the optimal incubation time for RT-LAMP assay was 45 min. There was a complete agreement between RT-LAMP and RT-qPCR in diagnosing the viral genome in the diluted extracted RNA sample. However, it had a lower sensitivity (71%) to detect the viral genome in direct swab samples compared to RT-qPCR. In conclusion, due to its simplicity, rapidness, sensitivity, and specificity, RT-LAMP has tremendous potential as a point-of-care tool; nevertheless, more research is needed to utilize it for detecting SARS-CoV-2, particularly in direct swab samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , COVID-19 Testing , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics
2.
Stem Cell Res Ther ; 13(1): 140, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365241

ABSTRACT

Autologous T cells genetically engineered to express chimeric antigen receptor (CAR) have shown promising outcomes and emerged as a new curative option for hematological malignancy, especially malignant neoplasm of B cells. Notably, when T cells are transduced with CAR constructs, composed of the antigen recognition domain of monoclonal antibodies, they retain their cytotoxic properties in a major histocompatibility complex (MHC)-independent manner. Despite its beneficial effect, the current CAR T cell therapy approach faces myriad challenges in solid tumors, including immunosuppressive tumor microenvironment (TME), tumor antigen heterogeneity, stromal impediment, and tumor accessibility, as well as tribulations such as on-target/off-tumor toxicity and cytokine release syndrome (CRS). Herein, we highlight the complications that hamper the effectiveness of CAR T cells in solid tumors and the strategies that have been recommended to overcome these hurdles and improve infused T cell performance.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive , Neoplasms/therapy , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Tumor Microenvironment
4.
Stem Cell Res Ther ; 12(1): 374, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215336

ABSTRACT

Adoptive cell therapy has received a great deal of interest in the treatment of advanced cancers that are resistant to traditional therapy. The tremendous success of chimeric antigen receptor (CAR)-engineered T (CAR-T) cells in the treatment of cancer, especially hematological cancers, has exposed CAR's potential. However, the toxicity and significant limitations of CAR-T cell immunotherapy prompted research into other immune cells as potential candidates for CAR engineering. NK cells are a major component of the innate immune system, especially for tumor immunosurveillance. They have a higher propensity for immunotherapy in hematologic malignancies because they can detect and eliminate cancerous cells more effectively. In comparison to CAR-T cells, CAR-NK cells can be prepared from allogeneic donors and are safer with a lower chance of cytokine release syndrome and graft-versus-host disease, as well as being a more efficient antitumor activity with high efficiency for off-the-shelf production. Moreover, CAR-NK cells may be modified to target various antigens while also increasing their expansion and survival in vivo. Extensive preclinical research has shown that NK cells can be effectively engineered to express CARs with substantial cytotoxic activity against both hematological and solid tumors, establishing evidence for potential clinical trials of CAR-NK cells. In this review, we discuss recent advances in CAR-NK cell engineering in a variety of hematological malignancies, as well as the main challenges that influence the outcomes of CAR-NK cell-based tumor immunotherapies.


Subject(s)
Hematologic Neoplasms , Receptors, Chimeric Antigen , Hematologic Neoplasms/therapy , Humans , Immunotherapy, Adoptive , Killer Cells, Natural , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
5.
Stem Cell Res Ther ; 12(1): 428, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321099

ABSTRACT

To date, two chimeric antigen receptors (CAR)-T cell products from autologous T cells have been approved by The United States Food and Drug Administration (FDA). The case-by-case autologous T cell generation setting is largely considered as a pivotal restraining cause for its large-scale clinical use because of the costly and prolonged manufacturing procedure. Further, activated CAR-T cells mainly express immune checkpoint molecules, including CTLA4, PD1, LAG3, abrogating CAR-T anti-tumor activity. In addition, CAR-T cell therapy potently results in some toxicity, such as cytokine releases syndrome (CRS). Therefore, the development of the universal allogeneic T cells with higher anti-tumor effects is of paramount importance. Thus, genome-editing technologies, in particular, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 are currently being used to establish "off-the-shelf" CAR-T cells with robust resistance to immune cell-suppressive molecules. In fact, that simultaneous ablation of PD-1, T cell receptor alpha constant (TRAC or TCR), and also ß-2 microglobulin (B2M) by CRISPR-Cas9 technique can support the manufacture of universal CAR-T cells with robust resistance to PD-L1. . Indeed, the ablation of ß2M or TARC can severely hinder swift elimination of allogeneic T cells those express foreign HLA-I molecules, and thereby enables the generation of CAR-T cells from allogeneic healthy donors T cells with higher persistence in vivo. Herein, we will deliver a brief overview of the CAR-T cell application in the context of tumor immunotherapy. More importantly, we will discuss recent finding concerning the application of genome editing technologies for preparing universal CAR-T cells or cells that can effectively counter tumor escape, with a special focus on CRISPR-Cas9 technology.


Subject(s)
Receptors, Chimeric Antigen , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , Immunotherapy , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism
6.
IUBMB Life ; 73(8): 1005-1015, 2021 08.
Article in English | MEDLINE | ID: mdl-34118117

ABSTRACT

The kidney is one of the main targets attacked by viruses in patients with a coronavirus infection. Until now, SARS-CoV-2 has been identified as the seventh member of the coronavirus family capable of infecting humans. In the past two decades, humankind has experienced outbreaks triggered by two other extremely infective members of the coronavirus family; the MERS-CoV and the SARS-CoV. According to several investigations, SARS-CoV causes proteinuria and renal impairment or failure. The SARS-CoV was identified in the distal convoluted tubules of the kidney of infected patients. Also, renal dysfunction was observed in numerous cases of MERS-CoV infection. And recently, during the 2019-nCoV pandemic, it was found that the novel coronavirus not only induces acute respiratory distress syndrome (ARDS) but also can induce damages in various organs including the liver, heart, and kidney. The kidney tissue and its cells are targeted massively by the coronaviruses due to the abundant presence of ACE2 and Dpp4 receptors on kidney cells. These receptors are characterized as the main route of coronavirus entry to the victim cells. Renal failure due to massive viral invasion can lead to undesirable complications and enhanced mortality rate, thus more attention should be paid to the pathology of coronaviruses in the kidney. Here, we have provided the most recent knowledge on the coronaviruses (SARS, MERS, and COVID19) pathology and the mechanisms of their impact on the kidney tissue and functions.


Subject(s)
COVID-19/mortality , Coronavirus Infections/mortality , Middle East Respiratory Syndrome Coronavirus/pathogenicity , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/mortality , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Viral Tropism/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Gene Expression Regulation , Humans , Kidney/metabolism , Kidney/pathology , Kidney/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
7.
Stem Cell Res Ther ; 12(1): 200, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33752707

ABSTRACT

In recent decades, a new method of cellular immunotherapy was introduced based on engineering and empowering the immune effector cells. In this type of immunotherapy, the immune effector cells are equipped with chimeric antigen receptor (CAR) to specifically target cancer cells. In much of the trials and experiments, CAR-modified T cell immunotherapy has achieved very promising therapeutic results in the treatment of some types of cancers and infectious diseases. However, there are also some considerable drawbacks in the clinical application of CAR-T cells although much effort is in progress to rectify the issues. In some conditions, CAR-T cells initiate over-activated and strong immune responses, therefore, causing unexpected side-effects such as systemic cytokine toxicity (i.e., cytokine release syndrome), neurotoxicity, on-target, off-tumor toxicity, and graft-versus-host disease (GvHD). To overcome these limitations in CAR-T cell immunotherapy, NK cells as an alternative source of immune effector cells have been utilized for CAR-engineering. Natural killer cells are key players of the innate immune system that can destroy virus-infected cells, tumor cells, or other aberrant cells with their efficient recognizing capability. Compared to T cells, CAR-transduced NK cells (CAR-NK) have several advantages, such as safety in clinical use, non-MHC-restricted recognition of tumor cells, and renewable and easy cell sources for their preparation. In this review, we will discuss the recent preclinical and clinical studies, different sources of NK cells, transduction methods, possible limitations and challenges, and clinical considerations.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Immunotherapy , Immunotherapy, Adoptive , Killer Cells, Natural , Neoplasms/therapy , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
8.
Cytokine ; 141: 155452, 2021 05.
Article in English | MEDLINE | ID: mdl-33571932

ABSTRACT

Idiopathic membranous nephropathy (IMN) as a single organ autoimmune disease is a main cause of nephrotic syndrome in adults which is determined through autoantibodies to podocytes proteins. Th17/regulatory T (Treg) balance has emerged as a prominent factor in the regulation of autoimmunity. In this study, we evaluated the balance of Th17 and Treg cells, expression level of related master transcription factors, cytokines and microRNAs in mononuclear cells of peripheral blood of 30 patients with IMN and 30 healthy individuals before treatment. No significant variation was observed in Th17 cell frequency, retinoic acid receptor-related orphan nuclear receptor γt (RORÉ£t), signal transducer and Activator of transcription 3(STAT3), IL-17, and IL-23, while IL-21, IL-4, and IL-10 had significant increase in mRNA expression and protein level of peripheral blood mononuclear cells in IMN cases. Reduction in the percentage of Treg cells was also accompanied with significantly decreased expression of Forkhead box P3(FOXP3) and Transforming growth factor beta(TGF-ß) in IMN patients compared to the control group. Our study revealed that Th17 cells themselves might not be engaged in the pathogenesis of newly diagnosed patients with IMN; however, decreased T reg cells and increased ratio of Th17/Treg lymphocytes might display a role in the pathogenesis of IMN before treatment.


Subject(s)
Cytokines/blood , Glomerulonephritis, Membranous/blood , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Adolescent , Adult , Aged , Cytokines/immunology , Female , Glomerulonephritis, Membranous/immunology , Humans , Lymphocyte Count , Male , Middle Aged , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology
9.
Stem Cell Res Ther ; 12(1): 81, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33494834

ABSTRACT

BACKGROUND: CARs are simulated receptors containing an extracellular single-chain variable fragment (scFv), a transmembrane domain, as well as an intracellular region of immunoreceptor tyrosine-based activation motifs (ITAMs) in association with a co-stimulatory signal. MAIN BODY: Chimeric antigen receptor (CAR) T cells are genetically engineered T cells to express a receptor for the recognition of the particular surface marker that has given rise to advances in the treatment of blood disorders. The CAR T cells obtain supra-physiological properties and conduct as "living drugs" presenting both immediate and steady effects after expression in T cells surface. But, their efficacy in solid tumor treatment has not yet been supported. The pivotal challenges in the field of solid tumor CAR T cell therapy can be summarized in three major parts: recognition, trafficking, and surviving in the tumor. On the other hand, the immunosuppressive tumor microenvironment (TME) interferes with T cell activity in terms of differentiation and exhaustion, and as a result of the combined use of CARs and checkpoint blockade, as well as the suppression of other inhibitor factors in the microenvironment, very promising results were obtained from the reduction of T cell exhaustion. CONCLUSION: Nowadays, identifying and defeating the mechanisms associated with CAR T cell dysfunction is crucial to establish CAR T cells that can proliferate and lyse tumor cells severely. In this review, we discuss the CAR signaling and efficacy T in solid tumors and evaluate the most significant barriers in this process and describe the most novel therapeutic methods aiming to the acquirement of the promising therapeutic outcome in non-hematologic malignancies.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive , Neoplasms/therapy , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Tumor Microenvironment
10.
Life Sci ; 265: 118767, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33212151

ABSTRACT

According to World Health Organization (WHO) reports about 70 million couples suffer from infertility all over the world. A lot of research groups are working on this issue and have made therapeutic approaches by integrating biology, medicine, genetics, chemistry, psychology, mechanic, and many other branches of science. However, these methods have their own pros and cons. Assisted Reproductive Technologies (ART) has appeared to solve infertility problems. In Vitro Fertilization (IVF), Intracytoplasmic Sperm Injection (ICSI), Intrauterine Insemination (IUI) are the most common and conventional technologies in this regard. There are at least two characteristics of microfluidics, mechanical and biochemical, which can be influential in the field of mammalian gamete and preimplantation embryo biology. These microfluidic characteristics can assist in basic biological studies on sperm, oocyte and preimplantation embryo structure, function and environment. Using microfluidics in sorting sperm, conducting different steps of oocyte selection and preparation, and transferring embryo by passing sub-microliter fluid through microchannels results in low cost and short time. The size and shape of microchannels and the volume of used fluid differs from non-human cells to human cells. The most progressions have been seen in animal models. Results suggest that microfluidic systems will lead to improved efficiencies in assisted reproduction.


Subject(s)
Microfluidics , Reproductive Techniques, Assisted , Animals , Cryopreservation , Embryo Culture Techniques , Female , Fertilization in Vitro/instrumentation , Fertilization in Vitro/methods , Humans , Lab-On-A-Chip Devices , Male , Microfluidic Analytical Techniques , Microfluidics/methods , Reproductive Techniques, Assisted/instrumentation , Spermatozoa
11.
Res Pharm Sci ; 12(4): 265-273, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28855937

ABSTRACT

Current licensed and commercially available prophylactic human papillomavirus (HPV) vaccines (Cervarix and quadrivalent/nine valents Gardasil) are based on major capsid protein L1 virus-like particles (VLPs) production which are expensive and type specific. Minor capsid L2-RG1 linear epitope (17-36) is a known candidate for induction of cross-neutralizing antibodies to develop low-cost pan-HPV vaccines. Herein, we report construction and expression of a three tandem repeats of L2-RG1 derived from HPV16 and 18 fused with the same head to tail pattern (HPV16:17-36×3+ HPV18:17-36×3; hereafter termed dual-type fusion L2 peptide) in E. coli and provide the results of its immunogenicity in mice. SDS-PAGE and western blot analyses indicated proper expression of the peptide that could be further purified by Ni-NTA affinity chromatography via the located C-terminal 6xHis-tag. Mice immunized by formulation of the purified peptide and Freund adjuvant raised neutralizing antibodies which showed proper cross reactivity to HPV L2 (11-200) of types: 18, 16, 31 and 45 (which totally are responsible for 90% of cervical cancers) and efficiently neutralized HPV18/16 pseudoviruses in vitro. Our results imply the possibility of development of a simple, low-cost preventive HPV vaccine based on this dual-type fusion L2 peptide in bacterial expression system with broad spectrum.

SELECTION OF CITATIONS
SEARCH DETAIL
...