Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(9): 8481-8487, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36910930

ABSTRACT

Flexible temperature sensors allow temperature monitoring in wearable healthcare devices. A temperature sensor, which can be printed on flexible substrates, is designed and fabricated using a low-cost silver particle ink and a fast and scalable screen-printing process. A high temperature resolution of 10 m°C is reached. The versatility of this temperature sensor design is demonstrated for various applications, including in situ heat flux measurements, where a 2 mW cm-2 resolution is reached, and thermal conductivity measurements on polymer films as thin as 25 µm, with a wide range of accessible values from ∼0.1 to 0.8 W K-1 m-1.

2.
Int J Radiat Biol ; 96(3): 411-418, 2020 03.
Article in English | MEDLINE | ID: mdl-31746658

ABSTRACT

Aim: The Pasche research group has reported that tumor-specific electromagnetic field frequencies have physiological and potential anti-tumor effects in cells, animals, and humans. Our aim was to investigate whether these fields have similar effects on physiological parameters in murine tumor models.Methods: Human HuH7 or HEPG2 cells were implanted in the right flank of 8-week-old female RAG gamma 2 C immunodeficient mice. An oximeter was used to record systolic blood pressure (pulse) in free-roaming conscious mice. Mice pulses were recorded and analyzed using a in-house software that also controlled the low-frequency generator for modulating the 27.12 MHz carrier wave at selected frequencies.Results: We performed exposures using both systematic scans at low frequencies and at the pre-determined frequencies reported by the Pasche group as altering both pulse and tumor growth in humans. Those exposures produced no detectable change in physiological parameters of tumor-bearing mice.Conclusion: No tumor-related frequencies were found, neither using systematic scans of frequencies nor published specific frequencies. There might obviously be differences between animal and human models, but our approach did not confirm the physiological data of the human Pasche group data.


Subject(s)
Carcinoma, Hepatocellular/pathology , Electromagnetic Fields , Liver Neoplasms/pathology , Animals , Blood Pressure , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Disease Models, Animal , Female , Hep G2 Cells , Humans , Liver Neoplasms/therapy , Mice , Mice, SCID , Neoplasm Transplantation , Oximetry
SELECTION OF CITATIONS
SEARCH DETAIL
...