Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(26): 10814-10818, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38859708

ABSTRACT

In this work, the insertion of CS2 into the Ge-Si bond of PhC(NtBu)2Ge-Si(SiMe3)3 (1) has been investigated, resulting in the formation of PhC(NtBu)2Ge-C(S)-S-Si(SiMe3)3 (2). Interestingly, the addition of NHC to 2 allows the release of NHC·CS2 with concomitant regeneration of 1. Addition of another equivalent of 1 or an analogous hypersilyl silylene, [PhC(NtBu)2Si-Si(SiMe3)3], to 2 led to the formation of compounds with a GeS (3) or a SiS (4) bond.

2.
Inorg Chem ; 63(25): 11531-11541, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38865259

ABSTRACT

Cu(II)-catalyzed C-N bond formation reactions remain one of most widely practiced and powerful protocols for the synthesis of value-added chemicals, bioactive molecules, and materials. Despite numerous experimental contributions, the overall mechanistic understanding of the C-N coupling reaction based on the Chan-Lam (CL) reaction methodology is still limited and underdeveloped, particularly with respect to the use of different substrates and catalytic species. Herein, we report an in-depth DFT-based study on the mechanism of N-arylation of imidazoles following Collman's experimental setup. Our findings unfold for the first time the ligand-based CL coupling catalyzed by the [Cu(II)(OH)TMEDA]2Cl2 complex. The transmetalation step with an energy span of 26.2 kcal mol-1 is rate-determining, while the subsequent disproportionation and reductive elimination are relatively facile (δE = 16.4 kcal mol-1) in comparison to the CL amination of secondary amines. The final oxidative catalyst regeneration results in the presence of O2, accompanying an energy span of 12.8 kcal mol-1, where hydrogen transfer from the coordinated water allows the reduction of superoxo linkage. Couplings performed in the presence of a combination of bidentate sp3-N ligands with single and double -(CH2)- spacer units afford a kinetically facile transformation (24.5 kcal mol-1). Furthermore, our results agree with the experimental outcomes of regioselective couplings of substituted imidazoles.

3.
Chemistry ; 29(71): e202303879, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38047530

ABSTRACT

Invited for the cover of this issue is the group of Koley and co-workers at the Indian Institute of Science Education and Research (IISER) Kolkata. The image depicts the industrial generation of the product from the available starting materials in a catalytic cycle. Read the full text of the article at 10.1002/chem.202302983.

4.
Chemistry ; 29(71): e202302983, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37794822

ABSTRACT

Ongoing advances in CuII -catalyzed aerobic oxidative coupling reactions between arylboronic esters and diverse heteroatom nucleophiles have strengthened the development of the general Chan-Lam (CL)-based reaction protocol, including C-O bond formation methodologies. In-depth mechanistic understanding of CL etherification with specific emphasis on different reaction routes and their energetics are still lacking, even though the reaction has been experimentally explored. Here, we present a DFT-guided computational study to unravel the mechanistic pathways of CL-based etherification. The computational findings provide some interesting insights into the fundamental steps of the catalytic cycle, particularly the rate-determining transmetalation event. An aryl boronic ester-coordinated, methoxide-bridged CuII intermediate that acts as resting state undergoes transmetalation with an activation barrier of 20.4 kcal mol-1 . The energy spans of the remaining fundamental steps leading to the methoxylated product are relatively low. The minor p-cresol product requires an additional 14.2 kcal mol-1 energy span to surmount in comparison to the favored route. Hammett studies for the substituted aryl boronic esters reveal higher reaction turnovers for electron-rich aryl systems. The results agree with previously reported spectroscopic and kinetic observations. For a series of alcohol substrates, it was observed that, except for cyclohexanol, moderate to high etherification turnovers are predicted.

SELECTION OF CITATIONS
SEARCH DETAIL
...