Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Dev ; 14(16): 2028-45, 2000 Aug 15.
Article in English | MEDLINE | ID: mdl-10950867

ABSTRACT

Cap-independent translation initiation on picornavirus mRNAs is mediated by an internal ribosomal entry site (IRES) in the 5' untranslated region (5' UTR) and requires both eukaryotic initiation factors (eIFs) and IRES-specific cellular trans-acting factors (ITAFs). We show here that the requirements for trans-acting factors differ between related picornavirus IRESs and can account for cell type-specific differences in IRES function. The neurovirulence of Theiler's murine encephalomyelitis virus (TMEV; GDVII strain) was completely attenuated by substituting its IRES by that of foot-and-mouth disease virus (FMDV). Reconstitution of initiation using fully fractionated translation components indicated that 48S complex formation on both IRESs requires eIF2, eIF3, eIF4A, eIF4B, eIF4F, and the pyrimidine tract-binding protein (PTB) but that the FMDV IRES additionally requires ITAF(45), also known as murine proliferation-associated protein (Mpp1), a proliferation-dependent protein that is not expressed in murine brain cells. ITAF(45) did not influence assembly of 48S complexes on the TMEV IRES. Specific binding sites for ITAF(45), PTB, and a complex of the eIF4G and eIF4A subunits of eIF4F were mapped onto the FMDV IRES, and the cooperative function of PTB and ITAF(45) in promoting stable binding of eIF4G/4A to the IRES was characterized by chemical and enzymatic footprinting. Our data indicate that PTB and ITAF(45) act as RNA chaperones that control the functional state of a particular IRES and that their cell-specific distribution may constitute a basis for cell-specific translational control of certain mRNAs.


Subject(s)
Cell Cycle Proteins/physiology , Protein Biosynthesis/physiology , Base Sequence , DNA , DNA Footprinting , Molecular Sequence Data , Nucleic Acid Conformation , RNA , Sequence Homology, Amino Acid
2.
J Virol ; 73(11): 8958-65, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10516001

ABSTRACT

Current models of recombination between viral RNAs are based on replicative template-switch mechanisms. The existence of nonreplicative RNA recombination in poliovirus is demonstrated in the present study by the rescue of viable viruses after cotransfections with different pairs of genomic RNA fragments with suppressed translatable and replicating capacities. Approximately 100 distinct recombinant genomes have been identified. The majority of crossovers occurred between nonhomologous segments of the partners and might have resulted from transesterification reactions, not necessarily involving an enzymatic activity. Some of the crossover loci are clustered. The origin of some of these "hot spots" could be explained by invoking structures similar to known ribozymes. A significant proportion of recombinant RNAs contained the entire 5' partner, if its 3' end was oxidized or phosphorylated prior to being mixed with the 3' partner. All of these observations are consistent with a mechanism that involves intermediary formation of the 2',3'-cyclic phosphate and 5'-hydroxyl termini. It is proposed that nonreplicative RNA recombination may contribute to evolutionarily significant RNA rearrangements.


Subject(s)
Poliovirus/genetics , Recombination, Genetic , Virus Replication , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Base Sequence , Crossing Over, Genetic , Molecular Sequence Data , Poliovirus/physiology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Templates, Genetic , Transcription, Genetic , Transfection
3.
J Virol ; 73(4): 3190-6, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10074172

ABSTRACT

Upon initiation of translation of picornavirus RNA, the ribosome is believed to bind the internal ribosome entry site of the template and then to form a productive complex with a downstream RNA segment, the starting window. The presence or absence of an AUG triplet within the starting window of the RNA of Theiler's murine encephalomyelitis virus (a picornavirus) is known to modulate its neurovirulence. In this study, mutants of this virus in which the starting windows, lying upstream of the viral polyprotein reading frame, had AUGs with different nonoptimal contexts were engineered. Upon intracerebral inoculation of mice, the mutants proved to be partially attenuated, as judged by a significant increase in the dose causing paralysis in 50% of the animals (PD50). Mutants with similar PD50s might differ from one another by eliciting either a severe, fatal tetraplegy or only mild, recoverable neurologic lesions. Some of the mutants triggered a chronic inflammatory reaction in the white matter of the spinal cord in the absence of detectable viral RNA or antigen. Thus, point mutations changing the context of an AUG within the starting window outside the polyprotein reading frame may differently affect the morbidity and mortality caused by a viral infection and may result in distinct attenuation phenotypes.


Subject(s)
Genome, Viral , Theilovirus/genetics , Animals , Base Sequence , Mice , Molecular Sequence Data , Mutation , Phenotype , Protein Biosynthesis
4.
J Virol ; 69(2): 864-70, 1995 Feb.
Article in English | MEDLINE | ID: mdl-7815554

ABSTRACT

A set of Theiler's murine encephalomyelitis virus mutants with engineered alterations in the conserved oligopyrimidine/AUG tandem (E. V. Pilipenko, A. P. Gmyl, S. V. Maslova, G. A. Belov, A. N. Sinyakov, M. Huang, T. D. K. Brown, and V. I. Agol, J. Mol. Biol. 241:398-414, 1994) were assayed for their growth potential in BHK-21 cells (as reflected in plaque size) and for neurovirulence upon intracerebral inoculation of mice. Tandem-destroying mutations, which included substitutions in the oligopyrimidine moiety and extended insertions into the oligopyrimidine/AUG spacer, exerted relatively little effect on the plaque size but ensured a high level of attenuation. The attenuated mutants exhibited remarkable genetic stability upon growth in BHK-21 cells. However, the brains of rare animals that developed symptoms after the inoculation with high doses of these mutants invariably contained pseudorevertants with the oligopyrimidine/AUG tandem restored by diverse deletions or an AUG-generating point mutation. The AUG moiety of the tandem in the revertant genomes was represented by either a cryptic codon or initiator codon. The results demonstrate that the tandem, while dispensable for the Theiler's murine encephalomyelitis virus growth in BHK-21 cells, is essential for neurovirulence in mice. Thus, the oligopyrimidine/AUG tandem is a host-dependent cis-acting control element that may be essential for virus replication under certain conditions. The functional activity of the tandem was retained when its oligopyrimidine or AUG moieties were made double stranded. A possible role of the tandem in the cap-independent internal initiation of translation on the picornavirus RNA templates is discussed.


Subject(s)
Codon , Genes, Regulator , Protein Biosynthesis , Theilovirus/genetics , Theilovirus/pathogenicity , Animals , Base Sequence , Brain/virology , Cell Line , Cricetinae , Genome, Viral , Molecular Sequence Data , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...