Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892189

ABSTRACT

High-temperature polymer-electrolyte membrane fuel cells (HT-PEMFCs) are a very important type of fuel cells since they operate at 150-200 °C, making it possible to use hydrogen contaminated with CO. However, the need to improve the stability and other properties of gas-diffusion electrodes still impedes their distribution. Self-supporting anodes based on carbon nanofibers (CNF) are prepared using the electrospinning method from a polyacrylonitrile solution containing zirconium salt, followed by pyrolysis. After the deposition of Pt nanoparticles on the CNF surface, the composite anodes are obtained. A new self-phosphorylating polybenzimidazole of the 6F family is applied to the Pt/CNF surface to improve the triple-phase boundary, gas transport, and proton conductivity of the anode. This polymer coating ensures a continuous interface between the anode and proton-conducting membrane. The polymer is investigated using CO2 adsorption, TGA, DTA, FTIR, GPC, and gas permeability measurements. The anodes are studied using SEM, HAADF STEM, and CV. The operation of the membrane-electrode assembly in the H2/air HT-PEMFC shows that the application of the new PBI of the 6F family with good gas permeability as a coating for the CNF anodes results in an enhancement of HT-PEMFC performance, reaching 500 mW/cm2 at 1.3 A/cm2 (at 180 °C), compared with the previously studied PBI-O-PhT-P polymer.


Subject(s)
Benzimidazoles , Electrodes , Benzimidazoles/chemistry , Polymers/chemistry , Nanofibers/chemistry , Electric Power Supplies , Membranes, Artificial , Electrolytes/chemistry , Acrylic Resins/chemistry
2.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38063706

ABSTRACT

Copper-based electrocatalytic materials play a critical role in various electrocatalytic processes, including the electroreduction of carbon dioxide and nitrate. Three-dimensional nanostructured electrodes are particularly advantageous for electrocatalytic applications due to their large surface area, which facilitates charge transfer and mass transport. However, the real surface area (RSA) of electrocatalysts is a crucial parameter that is often overlooked in experimental studies of high-surface-area copper electrodes. In this study, we investigate the roughness factors of electrodeposited copper foams with varying thicknesses and morphologies, obtained using the hydrogen bubble dynamic template technique. Underpotential deposition (UPD) of metal adatoms is one of the most reliable methods for estimating the RSA of highly dispersed catalysts. We aim to illustrate the applicability of UPD of lead for the determination of the RSA of copper deposits with hierarchical porosity. To find the appropriate experimental conditions that allow for efficient minimization of the limitations related to the slow diffusion of lead ions in the pores of the material and background currents of the reduction of traces of oxygen, we explore the effect of lead ion concentration, stirring rate, scan rate, monolayer deposition time and solution pH on the accuracy of RSA estimates. Under the optimized measurement conditions, Pb UPD allowed to estimate roughness factors as high as 400 for 100 µm thick foams, which translates into a specific surface area of ~6 m2·g-1. The proposed measurement protocol may be further applied to estimate the RSA of copper deposits with similar or higher roughness.

3.
Pharmaceutics ; 15(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38140032

ABSTRACT

The paper presents the results of the synthesis, a detailed kinetics study, and an investigation of the biological activity of silver nanoparticles (AgNPs) in aqueous solutions of N-reacetylated oligochitosan hydrochloride. UV-visible spectrophotometry and dynamic light scattering were employed to control silver ion reduction. The process was observed to follow a pseudo-first-order law. Transmission and scanning electron microscopy demonstrated that AgNPs ranging in size from 10 to 25 nm formed aggregates measuring 60 to 90 nm, with the aggregate surface coated by a 2-4 nm chitosan shell. X-ray microanalysis and powder X-ray diffractometry were used to study the phase composition, identifying two crystalline phases, nanocrystalline silver and AgCl, present in the dispersions. The antibacterial effect was assessed using the serial dilution method for dispersions with varying degrees of Ag+ conversion. Nanodispersions exhibited significant activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, and Staphylococcus aureus. Interestingly, the activity did not appear to be heavily influenced by the presence of the AgCl phase or the concentration of Ag+ ions. These synthesized dispersions hold promise for the development of materials tailored for biomedical applications.

4.
Membranes (Basel) ; 13(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37233540

ABSTRACT

High-temperature polymer-electrolyte membrane fuel cells (HT-PEM FC) are a very important type of fuel cell since they operate at 150-200 °C, allowing the use of hydrogen contaminated with CO. However, the need to improve stability and other properties of gas diffusion electrodes still hinders their distribution. Anodes based on a mat (self-supporting entire non-woven nanofiber material) of carbon nanofibers (CNF) were prepared by the electrospinning method from a polyacrylonitrile solution followed by thermal stabilization and pyrolysis of the mat. To improve their proton conductivity, Zr salt was introduced into the electrospinning solution. As a result, after subsequent deposition of Pt-nanoparticles, Zr-containing composite anodes were obtained. To improve the proton conductivity of the nanofiber surface of the composite anode and reach HT-PEMFC better performance, dilute solutions of Nafion®, a polymer of intrinsic microporosity (PIM-1) and N-ethyl phosphonated polybenzimidazole (PBI-OPhT-P) were used to coat the CNF surface for the first time. These anodes were studied by electron microscopy and tested in membrane-electrode assembly for H2/air HT-PEMFC. The use of CNF anodes coated with PBI-OPhT-P has been shown to improve the HT-PEMFC performance.

5.
Molecules ; 28(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36838926

ABSTRACT

Conductive LaNiO3 (LNO) films with an ABO3 perovskite structure deposited on silicon wafers are a promising material for various electronics applications. The creation of a well-defined columnar grain structure in CSD (Chemical Solution Deposition) LNO films is challenging to achieve on an amorphous substrate. Here, we report the formation of columnar grain structure in LNO films deposited on the Si-SiO2 substrate via layer-by-layer deposition with the control of soft-baking temperature and high temperature annealing time of each deposited layer. The columnar structure is controlled not by typical heterogeneous nucleation on the film/substrate interface, but by the crystallites' coalescence during the successive layers' deposition and annealing. The columnar structure of LNO film provides the low resistivity value ρ~700 µOhm·cm and is well suited to lead zirconate-titanate (PZT) film growth with perfect crystalline structure and ferroelectric performance. These results extend the understanding of columnar grain growth via CSD techniques and may enable the development of new materials and devices for distinct applications.


Subject(s)
Silicon Dioxide , Silicon , Silicon/chemistry , Hot Temperature , Temperature , Electric Conductivity
6.
Pharmaceutics ; 14(7)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35890221

ABSTRACT

Beneficial features of biocompatible high-capacity UiO-66 nanoparticles, mesoporous SiO2, and folate-conjugated pluronic F127 were combined to prepare the core-shell UiO-66@SiO2/F127-FA drug delivery carrier for targeted cellular uptake in cancer treatment. UiO-66 and UiO-66-NH2 nanoparticles with a narrow size and shape distribution were used to form a series of core-shell MOF@SiO2 structures. The duration of silanization was varied to change the thickness of the SiO2 shell, revealing a nonlinear dependence that was attributed to silicon penetration into the porous MOF structure. Doxorubicin encapsulation showed a similar final loading of 5.6 wt % for both uncoated and silica-coated particles, demonstrating the potential of the nanocomposite's application in small molecule delivery. Silica coating improved the colloidal stability of the composites in a number of model physiological media, enabled grafting of target molecules to the surface, and prevented an uncontrolled release of their cargo, with the drawback of decreased overall porosity. Further modification of the particles with the conjugate of pluronic and folic acid was performed to improve the biocompatibility, prolong the blood circulation time, and target the encapsulated drug to the folate-expressing cancer cells. The final DOX-loaded UiO-66@SiO2/F127-FA nanoparticles were subjected to properties characterization and in vitro evaluation, including studies of internalization into cells and antitumor activity. Two cell lines were used: MCF-7 breast cancer cells, which have overexpressed folate receptors on the cell membranes, and RAW 264.7 macrophages without folate overexpression. These findings will provide a potential delivery system for DOX and increase the practical value of MOFs.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 3 Pt 2): 546-556, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35702971

ABSTRACT

The crystal structure of samarium iron borate was analyzed with regard to growth conditions and temperature. The inclusion of about 7% Bi atoms in the crystals grown using the Bi2Mo3O12-based flux was discovered and there were no impurities in the crystals grown using the Li2WO4-based flux. No pronounced structural features associated with Bi inclusion were observed. The different absolute configurations of the samples grown using both fluxes were demonstrated. Below 80 K, a negative thermal expansion of the c unit-cell parameter was found. The structure of (Sm0.93Bi0.07)Fe3(BO3)4 belongs to the trigonal space group R32 in the temperature range 90-400 K. A decrease in the (Sm,Bi)-O, Sm-B, Sm-Fe, Fe-O, Fe-B and Fe-Fe distances is observed with a lowering of the temperature, B1-O does not change, B2-O increases slightly and the B2O3 triangles deviate from the ab plane. The strongest decrease in the equivalent isotropic atomic displacement parameters (Ueq) with decreasing temperature is observed for atoms Sm and O2, and the weakest is observed for B1. The O2 atoms have the highest Ueq values, the most elongated atomic displacement ellipsoids of all the atoms and the smallest number of allowed vibrational modes of all the O atoms. The largest number of allowed vibrational modes and the strongest interactions with neighbouring atoms is seen for the B atoms, and the opposite is seen for the Sm atoms. The quadrupole splitting Δ(T) of the paramagnetic Mössbauer spectra increases linearly with cooling. The Néel temperature [TN = 31.93 (5) K] was determined from the temperature dependence of the hyperfine magnetic field Bhf(T), which has a non-Brillouin character. The easy-plane long-range magnetic ordering below TN was confirmed.

8.
Nanomaterials (Basel) ; 13(1)2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36616004

ABSTRACT

Microheaters with long-term stability are crucial for the development of a variety of microelectronic devices operated at high temperatures. Structured Ta/Pt bilayers, in which the Ta sublayer ensures high adhesion of the Pt resistive layer, are widely used to create microheaters. Herein, a comprehensive study of the microstructure of Ta/Pt films using high-resolution transmission electron microscopy with local elemental analysis reveals the twofold nature of Ta after annealing. The main fraction of Ta persists in the form of tantalum oxide between the Pt resistive layer and the alumina substrate. Such a sublayer hampers Pt recrystallization and grain growth in bilayered Ta/Pt films in comparison with pure Pt films. Tantalum is also observed inside the Pt grains as individual Ta nanoparticles, but their volume fraction is only about 2%. Microheaters based on the 10 nm Ta/90 nm Pt bilayers after pre-annealing exhibit long-term stability with low resistance drift at 500 °C (less than 3%/month).

9.
Pharmaceutics ; 14(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35056960

ABSTRACT

Nanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance. Here, we report the result of LFMF-triggered release of the fluorescently labeled dextran from polyelectrolyte microcapsules modified with magnetic iron oxide nanoparticles. Polyelectrolyte microcapsules were obtained by a method of sequential deposition of oppositely charged poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on the surface of colloidal vaterite particles. The synthesized single domain maghemite nanoparticles integrated into the polymer multilayers serve as magneto-mechanical actuators. We report the first systematic study of the effect of magnetic field with different frequencies on the permeability of the microcapsules. The in situ measurements of the optical density curves upon the 100 mT LFMF treatment were carried out for a range of frequencies from 30 to 150 Hz. Such fields do not cause any considerable heating of the magnetic nanoparticles but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations of the adjacent materials. We observed the changes in release of the encapsulated TRITC-dextran molecules from the PAH/PSS microcapsules upon application of the 50 Hz alternating magnetic field. The obtained results open new horizons for the design of polymer systems for triggered drug release without dangerous heating and overheating of tissues.

10.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 6): 954-968, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-32830675

ABSTRACT

An accurate single-crystal X-ray diffraction study of bismuth-containing HoFe3(BO3)4 between 11 and 500 K has revealed structural phase transition at Tstr = 365 K. The Bi atoms enter the composition from Bi2Mo3O12-based flux during crystal growth and significantly affect Tstr. The content of Bi was estimated by two independent methods, establishing the composition as (Ho0.96Bi0.04)Fe3(BO3)4. In the low-temperature (LT) phase below Tstr the (Ho0.96Bi0.04)Fe3(BO3)4 crystal symmetry is trigonal, of space group P3121, whereas at high temperature (HT) above 365 K the symmetry increases to space group R32. There is a sharp jump of oxygen O1 (LT) and O2 (LT) atomic displacement parameters (ADP) at Tstr. O1 and O2 ADP ellipsoids are the most elongated over 90-500 K. In space group R32 specific distances decrease steadily or do not change with decreasing temperature. In space group P3121 the distortion of the polyhedra Ho(Bi)O6, Fe1O6 and Fe2O6, B2O3 and B3O3 increases with decreasing temperature, whereas the triangles B1O3 remain almost equilateral. All BO3 triangles deviate from the ab plane with decreasing temperature. Fe-Fe distances in Fe1 chains decrease, while distances in Fe2 chains increase with decreasing temperature. The Mössbauer study confirms that the FeO6 octahedra undergo complex dynamic distortions. However, all observed distortions are rather small, and the general change in symmetry during the structural phase transition has very little influence on the local environment of iron in oxygen octahedra. The Mössbauer spectra do not distinguish two structurally different Fe1 and Fe2 positions in the LT phase. The characteristic temperatures of cation thermal vibrations were calculated using X-ray diffraction and Mössbauer data.

SELECTION OF CITATIONS
SEARCH DETAIL
...