Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mini Rev Med Chem ; 12(10): 1007-14, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22625419

ABSTRACT

Drug development in the recent times often relies on use of natural and synthetic drugs that are promising candidates as therapeutic agents for prevention of diseases and disorders. They possess different chemical structures with wide range of therapeutic activities. Many natural and synthetic drugs act as antioxidant agents in various metabolic processes. Increasing epidemiological, clinical and experimental studies have shown that intake of antioxidants drugs provide protection against various disorders and diseases related to oxidative stress. The factors responsible for this oxidative stress are mainly free radicals, reactive nitrogen species (RNS) and reactive oxygen species (ROS). The antioxidant drugs act as free radical scavenging, reducing and metal chelating substances; Antioxidants also show inhibition of various metabolic enzymes and factors responsible for inflammation. The present paper reviews different In vitro assays for determination of antioxidant activities (Table 1). The basic assays include DDPH assay, OH Scavenging assay, Reducing activity assay, TEAC assay, FCR assay, PRTC assay, ABTS assay, FRAP assay, ORAC assay, Ferric thiocynate assay, TRAP assay, Chemiluminescence assay, NBT assay, CUPRAC Assay.


Subject(s)
Antioxidants/pharmacology , Drug Evaluation, Preclinical/methods , Plant Extracts/pharmacology , Animals , Free Radicals/chemistry , Humans , Plants, Medicinal/chemistry
2.
Comput Biol Med ; 42(6): 657-66, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22537975

ABSTRACT

Uricase (EC 1.7.3.3, UC) catalyzes the oxidation of uric acid (UA) to more soluble allantoin thereby lowering plasma UA levels. In humans, when concentration of UA exceeds >7mg/dl, it leads to hyperuricemia, gout, nephrolithiasis and urolithiasis. A new remedy to cure such metabolic diseases is the enzyme supplementation therapy by UC but with high degree of antigenic independence. Therefore screening of new uricase sources to expand its usefulness and reduced antigenecity is needed. Present study employed cheminformatics approach to construct models of reported UC from different sources viz. Bacillus megaterium, Streptomyces bingchenggensis BCW-1, Paenibacillus sp, Solibacter usitatus Ellin6076, Truepera radiovictrix DSM 17093 and Ktedonobacter racemifer DSM 4496 in order to study their structure-function relationship for enzyme mass production and modification for improved characteristics. BioMed CAChe version 6.1 was further used to study enzyme-substrate interactions of models with uric acid using docking approach. Results indicated that models for UC of Streptomyces bingchenggensis BCW-1 accounted for better regio-specificity towards UA, supporting the interested metabolism and thus may further be implicated in enzyme supplementation therapy for hyperuricemic associated disorders.


Subject(s)
Computational Biology/methods , Models, Chemical , Urate Oxidase/chemistry , Urate Oxidase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Computer Simulation , Drug Discovery , Hyperuricemia/drug therapy , Hyperuricemia/enzymology , Models, Molecular , Structural Homology, Protein , Uric Acid/chemistry , Uric Acid/metabolism
3.
Int J Biol Macromol ; 49(1): 62-70, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21458484

ABSTRACT

Glycolate oxidase (GOX) is one of the principal enzymes involved in the pathway of oxalate synthesis. It converts glycolate to glyoxylate by oxidation and then glyoxylate is finally converted to oxalate. Therapeutic intervention of GOX in this consequence thus found potential in the treatment of calcium oxalate urolithiasis. In present investigation, we explored GOX in search of potential leads from traditional resources. Molecular modeling of the identified leads, quercetin and kaempherol, was performed by employing Glide 5.5.211 (SchrodingerTM suite). In the absence of pure human glycolate oxidase (hGOX) preparation, in vitro experiments were performed on spinach glycolate oxidase (sGOX) as both enzymes possess 57% identity and 76% similarity along with several conserved active site residues in common. We aimed to identify a possible mechanism of action for the anti-GOX leads from Tribuls terrestris, which can be attributed to anti-urolithic drug development. This study found promising in development of future GOX inhibitory leads.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Drug Discovery/methods , Flavonoids/pharmacology , Models, Molecular , Plant Extracts/pharmacology , Tribulus/chemistry , Urolithiasis/drug therapy , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Amino Acid Sequence , Computational Biology , Humans , In Vitro Techniques , Kinetics , Sequence Alignment , Spinacia oleracea
4.
Int J Biol Macromol ; 48(3): 466-73, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21255608

ABSTRACT

In humans oxalate is end product of protein metabolism, with no enzyme present to act on it. In conditions of its enhanced endogenous synthesis or increased absorption from the diet, oxalate accumulation leads to hyperoxaluria which can further lead to a number of pathological conditions including urolithiasis. Urolithiasis has been a perplexing problem due to its high incidence and rate of recurrence after treatment like Extracorporeal-shock wave lithotripsy (ESWL). Hence other prophylactic treatment becomes necessary. One of the newer approaches of curing such metabolic disorders is the enzyme supplementation therapy. Oxalate oxidase (OxOx) is a commonly occurring enzyme in plants, bacteria and fungi that catalyses oxidative cleavage of oxalate to CO(2) with reduction of dioxygen to H(2)O(2). Present study, used Hordeum vulgare OxOx crystal structure (PDB ID 2ET1A) as a template for constructing 3D models of OxOx from Triticum aestivum, Arabidopsis thaliana, Sclerotiana sclerotiarum. Similarly Homology models for isoforms Ceriporiopsis subvermispora 336, C. subvermispora 422 were constructed by using template Bacillus subtilis oxalate decarboxylase (Oxdc) (PDB ID 2UY8A) by comparative modeling approach in SWISS MODEL, MODELLER, 3D JIGSAW and GENO 3D program server. Based on overall stereochemical quality (PROCHECK, PROSA, VARIFY 3D), best models were selected, energy minimized, refined and characterized for active site in BioMed CaChe V 6.1 workspace. Selected models were further studied for structure function relationship with substrate (oxalate) and its analogue (glycolate) by using docking approach. Calculated interaction energy between the oxalate and constructed enzyme indicated that homology models for OxOx of T. aestivum, A. thaliana and S. sclerotiarum, can account for better regio-specificity of this enzyme towards oxalate. That supports the interested metabolism and thus may further implement in enzyme supplementation therapy for urolithiasis.


Subject(s)
Oxidoreductases/chemistry , Oxidoreductases/metabolism , Amino Acid Sequence , Bacteria/enzymology , Catalytic Domain , Enzyme Replacement Therapy , Humans , Models, Molecular , Molecular Sequence Data , Oxalates/metabolism , Oxidoreductases/therapeutic use , Sequence Alignment , Urolithiasis/therapy
5.
Bioorg Med Chem ; 18(16): 6149-55, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20638287

ABSTRACT

In the present article, we have synthesized a combinatorial library of 3,5-diaryl pyrazole derivatives using 8-(2-(hydroxymethyl)-1-methylpyrrolidin-3-yl)-5,7-dimethoxy-2-phenyl-4H-chromen-4-one (1) and hydrazine hydrate in absolute ethyl alcohol under the refluxed conditions. The structures of the compounds were established by IR, (1)H NMR and mass spectral analysis. All the synthesized compounds were evaluated for their anticancer activity against five cell lines (breast cancer cell line, prostate cancer cell line, promyelocytic leukemia cell line, lung cancer cell line, colon cancer cell line) and anti-inflammatory activity against TNF-alpha and IL-6. Out of 15 compounds screened, 2a and 2d exhibited promising anticancer activity (61-73% at 10 microM concentration) against all selected cell lines and IL-6 inhibition (47% and 42% at 10 microM concentration) as in comparison to standard flavopiridol (72-87% inhibition at 0.5 microM) and dexamethasone (85% inhibition at 1 microM concentration), respectively. Cytotoxicity of the compounds checked using CCK-8 cell lines and found to be nontoxic to slightly toxic. Out of 15, four 3,5-diaryl pyrazole derivatives exhibiting potent inhibitory activities against both the monophenolase and diphenolase actions of tyrosinase. The IC(50) values of compounds (2a, 2d, 2h and 2l) for monophenolase inhibition were determined to range between 1.5 and 30 microM. Compounds 2a, 2d, 2h and 2l also inhibited diphenolase significantly with IC(50) values of 29.4, 21.5, 2.84 and 19.6 microM, respectively. All four 3,5-diaryl pyrazole derivatives were active as tyrosinase inhibitors (2a, 2d, 2h and 2l), and belonging to competitive inhibitors. Interestingly, they all manifested simple reversible slow-binding inhibition against diphenolase.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Monophenol Monooxygenase/antagonists & inhibitors , Pyrazoles/chemistry , Pyrazoles/pharmacology , Agaricales/enzymology , Anti-Inflammatory Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cytokines/immunology , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Monophenol Monooxygenase/metabolism , Neoplasms/drug therapy , Pyrazoles/chemical synthesis
6.
Int J Biol Macromol ; 47(2): 298-303, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20403378

ABSTRACT

Hyperuricemia is a condition of defective purine metabolism characterized with elevated serum uric acid (UA) level that further leads to gout and gouty nephrolithiasis disorders. Gout is a world wide distributed rheumatic disease comprises 1% of the total population and still is in increasing state. One of the factors contributing to overproduction of UA is the hydroxylation of xanthine catalyzed by xanthine oxidase (XO). In the present study, 3D modeling of Arthrobacter sp. XL26 (xodB) protein was performed by comparative modeling approach using Rhodobacter capsulatus XDH (PDB ID: 2W3sF) as template in SWISS-MODEL, Geno3D and MODELLER program server. The best model was selected based on overall stereochemical quality (Procheck, PROSA, GenThreader), energy minimized, refined and used for active site characterization in BioMed CAChe workspace. The enzyme-inhibitor interaction was studied by docking to screen the possible inhibitors and application of model in design and development of anti-gout agents.


Subject(s)
Arthrobacter/enzymology , Models, Molecular , Sequence Homology, Amino Acid , Xanthine Oxidase/chemistry , Xanthine Oxidase/metabolism , Amino Acid Sequence , Catalytic Domain , Computational Biology , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Molecular Sequence Data , Reproducibility of Results , Xanthine Oxidase/antagonists & inhibitors
7.
Braz. j. microbiol ; 40(2): 358-366, Apr.-June 2009. ilus, graf, tab
Article in English | LILACS | ID: lil-520224

ABSTRACT

An extra cellular lipase was isolated and purified from the culture broth of Pseudomonas aeruginosa SRT 9 to apparent homogeneity using ammonium sulfate precipitation followed by chromatographic techniques on phenyl Sepharose CL- 4B and Mono Q HR 5/5 column, resulting in a purification factor of 98 fold with specific activity of 12307.8 U/mg. The molecular weight of the purified lipase was estimated by SDS-PAGE to be 29 kDa with isoelectric point of 4.5. Maximum lipase activity was observed in a wide range of temperature and pH values with optimum temperature of 55ºC and pH 6.9. The lipase preferably acted on triacylglycerols of long chain (C14-C16) fatty acids. The lipase was inhibited strongly by EDTA suggesting the enzyme might be metalloprotein. SDS and metal ions such as Hg2+, Zn2+, Cu2+, Ag2+ and Fe2+ decreased the lipase activity remarkedly. Its marked stability and activity in organic solvents suggest that this lipase is highly suitable as a biotechnological tool with a variety of applications including organo synthetic reactions and preparation of enantiomerically pure pharmaceuticals. The Km and Vmax value of the purified enzyme for triolein hydrolysis were calculated to be 1.11 mmol/L and 0.05 mmol/L/minrespectively.


Uma lipase extracelular foi isolada e purificada a partir de um caldo de cultura de Pseudomonas aeruginosa SRT9 até homogeneidade visível empregando-se precipitação com sulfato de amônia, seguida de técnicas cromatográficas em colunas de fenil sefarose CL-4B e Mono Q HR 5/5, obtendo-se um fator de purificação de 98 vezes, e atividade especifica de 12307,8 U/mg. Por SDS_PAGE, estimou-se que o peso molecular da lipase purificada é 29kDa, com um ponto isoelétrico de 4,5. A lipase apresentou atividade máxima em uma ampla faixa de temperatura e pH, com ótimos a 55ºC e pH 6,9. A lípase foi mais ativa sobre triacilglicerois de cadeia longa (C14-C16). A lipase foi fortemente inibida por EDTA, o que sugere que a enzima pode ser uma metaloproteína. SDS e íons metálicos, como Hg2+, Zn2+,Cu2+, Ag2+ e Fe2+, diminuíram marcadamente a atividade da lipase. Sua grande estabilidade e atividade em solventes organicos sugerem que esta lípase pode ser uma excelente ferramenta tecnológica com várias aplicações como reações organosintéticas e preparação de produtos farmacêuticos enantiomericamente puros. Os valores de Km e Vmax para a enzima purificada na hidrólise de trioleina foram 1,11 mmol/L e 0,05 mmol/L/min, respectivamente.


Subject(s)
Ammonium Sulfate , Lipase/analysis , Metalloproteins/analysis , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Sepharose/analysis , Chromatography , Methods , Methods
8.
Braz J Microbiol ; 40(2): 358-66, 2009 Apr.
Article in English | MEDLINE | ID: mdl-24031373

ABSTRACT

An extra cellular lipase was isolated and purified from the culture broth of Pseudomonas aeruginosa SRT 9 to apparent homogeneity using ammonium sulfate precipitation followed by chromatographic techniques on phenyl Sepharose CL- 4B and Mono Q HR 5/5 column, resulting in a purification factor of 98 fold with specific activity of 12307.8 U/mg. The molecular weight of the purified lipase was estimated by SDS-PAGE to be 29 kDa with isoelectric point of 4.5. Maximum lipase activity was observed in a wide range of temperature and pH values with optimum temperature of 55ºC and pH 6.9. The lipase preferably acted on triacylglycerols of long chain (C14-C16) fatty acids. The lipase was inhibited strongly by EDTA suggesting the enzyme might be metalloprotein. SDS and metal ions such as Hg(2+), Zn(2+), Cu(2+), Ag(2+) and Fe(2+) decreased the lipase activity remarkedly. Its marked stability and activity in organic solvents suggest that this lipase is highly suitable as a biotechnological tool with a variety of applications including organo synthetic reactions and preparation of enantiomerically pure pharmaceuticals. The Km and Vmax value of the purified enzyme for triolein hydrolysis were calculated to be 1.11 mmol/L and 0.05 mmol/L/min respectively.

9.
J Enzyme Inhib Med Chem ; 23(3): 341-6, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18569337

ABSTRACT

Xanthine dehydrogenase (XDH) is responsible for the pathological condition called Gout. In the present study different flavones synthesized from chalcone were evaluated in vitro for their inhibitory activity. Inhibitory activity of flavones on XDH was determined in terms of inhibition of uric acid synthesis from Xanthine. The enzymatic activity was found maximum at pH 7.5 and temperature 40 degrees C. The flavones 6-chloro-2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(1)) and 6-chloro-7methyl-2-[3-(4-chloro-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one(F(2)),were noncompetitive and competitive inhibitor with Ki values 1.1 and 0.22 respectively. The flavones (F(1)), (F(2)), 6-chloro-2-[3-(4-chloro-phenyl)-1phenyl-1-H-pyrazol-4-yl]-chromen-4-one(F(3)), 8-bromo-6-chloro-2-[3-(4-chloro-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(4)), 2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(5)) and 6-methyl-2-[3-(4-hydroxy-phenyl)-1-phenyl-1-H-pyrazol-4-yl]-chromen-4-one (F(6)) were also screened for their antimicrobial activity, measured in terms of zone of inhibition. A broad spectrum antifungal activity was obtained against Trichoderma viridae, Candida albicans, Microsporum cannis, Penicillium chrysogenum and Fusarium moniliformae. In case of Aspergillus niger and Aspergillus flavous only spore formation was affected, while antibacterial activity was observed against Staphylococcus aureus, Bacillus subtilis and Serratia marsecens only. The flavones were further analyzed for quantitative structural activity relationship study (QSAR) by using PASS, online software to determine their Pa value. Toxicity and drug relevant properties were revealed by PALLAS software in terms of their molecular weight. Log P values were also studied. The result showed both the F(1) and F(2) flavones as antigout and therefore supports the development of novel drugs for the treatment of gout.


Subject(s)
Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Flavones/pharmacology , Xanthine Dehydrogenase/antagonists & inhibitors , Animals , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Chickens , Enzyme Inhibitors , Flavones/chemistry , Gout/drug therapy , Liver/enzymology , Microbial Sensitivity Tests , Structure-Activity Relationship
10.
Indian J Biochem Biophys ; 43(6): 391-4, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17285805

ABSTRACT

L-Asparaginase shows antileukemic activity and is generally administered in the body in combination with other anticancer drugs like pyrimidine derivatives. In the present study, L-asparaginase was purified from a bacteria Erwinia carotovora and the effect of a dihydropyrimidine derivative (1-amino-6-methyl-4-phenyl-2-thioxo, 1,2,3,4-tetrahydropyrimidine-5-carboxylic acid methyl ester) was studied on the kinetic parameters Km and Vmax of the enzyme using L-asparagine as substrate. The enzyme had optimum activity at pH 8.6 and temperature 35 degrees C, both in the absence and presence of pyrimidine derivative and substrate saturation concentration at 6 mg/ml. For the enzymatic reaction in the absence and presence (1 to 3 mg/ml) of dihydropyrimidine derivative, Km values were 7.14, 5.26, 4.0, and 5.22 M, and Vmax values were 0.05, 0.035, 0.027 and 0.021 mg/ml/min, respectively. The kinetic values suggested that activity of enzyme was enhanced in the presence of dihydropyrimidine derivative.


Subject(s)
Asparaginase/isolation & purification , Asparaginase/physiology , Pectobacterium carotovorum/enzymology , Pyrimidines/pharmacology , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...