Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(1): e23139, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38173523

ABSTRACT

This work presents a novel, strong and efficient adsorbent (CS@TDI@EDTA@γ-AlO(OH)) prepared through the green process using three components, chitosan, BNPs and EDTA using amide and ester bridges. An eco-friendly and easy approach was used for the preparation of this novel adsorbent, the low cost, easy access to the used materials, and the simplicity of the preparation method are some of the interesting advantages of this work. Also, this prepared adsorbent was used as an adsorbent to remove diazinon organophosphate poison and tetracycline antibiotic from aqueous solutions. In order to confirm the prepared adsorbent structure, the CS@TDI@EDTA@γ-AlO(OH) composite was investigated by various analyses including FT-IR, EDX, XRD, FESEM and TGA. The adsorption behavior of the adsorbent prepared for the removal of tetracycline and diazinon was investigated under different conditions by varying the concentration, temperature, the adsorbent dose, pH and contact time. Based on various tests, the highest diazinon adsorption capacity was obtained for 0.12 g/L adsorbent at pH 7 and 60 °C with 40 mg/L initial concentration. Also, the maximum adsorption capacity of the tetracycline was obtained for 0.12 g/L adsorbent at pH 9 and 60 °C with 30 mg/L initial concentration. The equilibrium results for diazinon and for tetracycline were in good accordance with the Langmuir and Freundlich isotherm models, respectively. Also, the highest adsorption capacities for diazinon at pH 7 and tetracycline at pH 9 were 1428.5 and 555.5 mg/g, respectively. Also the kinetic investigations revealed that the correlation factor (R2) of pseudo-second-order model obtained for the adsorption of diazinon and tetracycline was 0.9986 and 0.9988, while the coefficient k (g/mg.min) was 0.000084 and 0.0033, respectively. These results indicate that the adsorption of diazinon and tetracycline is pseudo-second-order kinetics model. Formation of hydrogen bonds between adsorbate and adsorbent as well as the high specific surface area and porosity of the adsorbent are the main mechanisms that contribute to the adsorption process. In addition, thermodynamic studies indicated that the adsorption of diazinon and tetracycline is a spontaneous endothermic process. The adsorbent prepared in this work was expected to have wide range of applications in wastewater treatment thanks to its good reusability in water and strong removal of diazinon and tetracycline compared to other adsorbents.

2.
J Contam Hydrol ; 256: 104193, 2023 05.
Article in English | MEDLINE | ID: mdl-37229922

ABSTRACT

Increasing population growth and rapid expansion of the industrialization of the world society have caused severe environmental pollution to the planet. This study was carried out in order to investigate the synthesis of biopolymeric texture nano adsorbent based on the Lentinan (LENT), Poly Vinyl Alcohol (PVA) and Iron Oxide nanoparticles for the removal of environmental pollutants. The spherical structural morphology of Fe3O4@LENT/PVA nanocomposite has been determined by FE-SEM analyses. According to the obtained results from FTIR analyses, all absorption bands of the Fe3O4, LENT, and PVA, had been existed in nanocomposite and approved the successful formation of it. From EDS analysis, it has been revealed that 57.21 wt% Fe, 17.56 wt% C and 25.23 wt% O. Also, the XRD pattern of the nanocomposite, approved the presence of polymeric and magnetic parts with card no. JCPDS, 01-075-0033. The BET analysis has defined specific surface area (47 m2/g) and total pore volume (0.15 cm3/g). Moreover, high heterogeneity and structural stability of the fabricated Fe3O4@LENT/PVA nanocomposite have been proven by TGA. Besides, VSM analysis measured great magnetic property of the nanocomposite (48 emu/g). Also, the Fe3O4@LENT/PVA nanocomposite potential for effective removal of malathion (MA), Diazinon (DA), and Diclofenac (DF) from watery solution has studied by an experiment based on the efficacy of adsorbent dosage, pH, and temperature. The adsorption kinetics of three pollutants had investigated using pseudo-first-order (PFO), pseudo-second-order (PSO) and intra-particle diffusion (IPD) velocity equations, the results showed that the kinetics followed PSO velocity equations. Also, the Langmuir, Freundlich, Dubbin-Radushkevich (D-R) and Temkin isotherm models had investigated, and the adsorption isotherm was adopted from the Langmuir model. The results demonstrated that in the presence of Fe3O4@LENT/PVA nanocomposite, at the optimal conditions (contact time = 180 min, pH = 5, nanocomposite dosage = 0.20 g/L and temperature of 298 K) the maximum adsorption capacity of MA, DF, and DA were 101.57, 153.28, and 102.75 mg/g, respectively. The antibacterial features of the Fe3O4@LENT/PVA nanocomposite, had evaluated by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, but the result did not show any antibacterial activity.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Polyvinyl Alcohol/chemistry , Diazinon , Malathion , Diclofenac , Lentinan , Escherichia coli , Staphylococcus aureus , Adsorption , Anti-Bacterial Agents , Magnetic Phenomena , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration
3.
Sci Rep ; 12(1): 5531, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365714

ABSTRACT

According to 4H-chromenes importance, we synthesized a novel magnetic UiO-66 functionalized with 4,4'-diamino-2,2'-stilbenedisulfonic as an efficient and reusable solid acid catalyst for synthesizing 4H-chromene skeletons via a one-pot three components reaction in a green solvent. The structure of the synthesized catalyst was confirmed by various techniques including FT-IR, XRD, BET, TGA, TEM, EDX, and SEM, and also the product yields were obtained in 83-96% of yields for all the reactions and under mild conditions. The reported procedure presents an environmentally friendly approach for synthesizing a significant number of 4H-chromene derivatives. Correspondingly, MOF-based catalyst makes it easy to separate from reaction media and reuse in the next runs.


Subject(s)
Benzopyrans , Magnetic Phenomena , Benzopyrans/chemistry , Metal-Organic Frameworks , Phthalic Acids , Solvents , Spectroscopy, Fourier Transform Infrared
4.
RSC Adv ; 11(62): 38961-38976, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-35492451

ABSTRACT

In this study, a novel and efficient drug delivery system is proposed for the enhancement of antimicrobial properties of antibiotic medications such as vancomycin (VCM) and levofloxacin (OFX). The architecture of the designed drug carrier is based on halloysite nanotubes (HNTs) with a rolled-laminate shape, suitable for the encapsulation of drug and further release. In order to make them capable for magnetic direction to the target tissue, the exterior surface of the tubes is composed of iron oxide nanoparticles (Fe3O4 NPs), via an in situ process. The main role in the antimicrobial activity enhancement is played by a cell-penetrating peptide (CPP) sequence synthesized in the solid phase, which contains three arginine-tryptophan blocks plus a cysteine as the terminal amino acid (C(WR)3). The drug content values for the prepared nanocargoes named as VCM@Fe3O4/HNT-C(WR)3 and OFX@Fe3O4/HNT-C(WR)3, have been estimated at ca. 10 wt% and 12 wt%, respectively. Also, the drug release investigations have shown that above 90% of the encapsulated drug is released in acetate buffer (pH = 4.6), during a 90 minutes process. Confocal microscopy has corroborated good adhesion and co-localization of the particles and the stained living cells. Moreover, in vitro antimicrobial assessments (optical density, zone of inhibition, and minimum inhibitory concentration) have revealed that the bacterial cell growth rate is significantly inhibited by suggested nanocargoes, in comparison with the individual drugs in the same dosage. Hence, administration of the presented nanocargoes is recommended for the clinical treatment of the infected target organ.

SELECTION OF CITATIONS
SEARCH DETAIL
...