Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(29): 42012-42022, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853231

ABSTRACT

Silicon nanoparticles (Si NPs) have an eminent role in improving plant yield through improving yield. The present study was conducted to find the effect of Si NPs on plant yield, biochemical attributes, and minerals of different cucumber cultivars. The greenhouse experiment with foliar application of Si NPs (100, 200, and 300 mg L-1) was carried out on cucumber cultivars (Emilie, Mirsoltan, Mitio, and Viola). The application of Si NPs at 300 mg L-1 led to the highest fruit yield, with a 17% increase in fruit production compared to the control. Fruit firmness differed by 31% between Emilie and Si NPs at 100 mg L-1 and Mito at 300 mg L-1. Plants experiencing Si NPs at 300 mg L-1 had the greatest chlorophyll (Chl) a+b. Compared to the other cultivars, Mito had a greater fruit yield and Chl content. The Si NPs increased TSS by 11% while lowering TA by 24% when compared to the control at 300 mg L-1. Foliar application of Si NPs reduced the value of TSS/TA. The largest value of K was reached in the Mito cultivar with Si NPs at 200 mg L-1, with a 22% increase in comparison to the control, indicating that Si NPs considerably boosted the K content. The Si NPs at 200 mg L-1 significantly increased leaf N and P in the Mito cultivar by 16 and 50%, respectively. By using agglomerative hierarchy clustering (AHC), Emilie and Mito were located in two separate clusters, whilst Viola and Mirsoltan were grouped in one cluster. In conclusion, Si NPs at 200-300 mg L-1 enhanced fruit yield, and Mito showed the highest yield when compared to other cultivars.


Subject(s)
Cucumis sativus , Fruit , Plant Leaves , Silicon , Cucumis sativus/drug effects , Silicon/pharmacology , Nanoparticles , Minerals , Chlorophyll
2.
Iran J Basic Med Sci ; 27(7): 879-887, 2024.
Article in English | MEDLINE | ID: mdl-38800018

ABSTRACT

Objectives: Alzheimer's disease (AD) is a neurodegenerative disease that results in the gradual breakdown of brain tissue, causing the deterioration of intellectual function and ability. Crocin is a saffron carotenoid compound proven to have excellent neuroprotective and anti-inflammation properties, although it has some limitations such as low stability and bioavailability. Therefore, in the current research, we tried to improve these limitations by using nanotechnology and chitosan as the carrier. Our study examined the therapeutic effects of crocin nano-chitosan-coated compound and compared it with intact crocin in lower dosages than other studies in AD rat models. Materials and Methods: Encapsulating crocin into chitosan nanoparticles was done through a modified technique to improve its limitations. The AD rat model was induced by bilaterally injecting beta-amyloid (Aß) peptide into the frontal lobe using a stereotaxic device. To evaluate memory, we conducted the Barnes maze test, and to evaluate anxiety, we used the elevated plus maze test. Also, histological tests were conducted to evaluate neuronal damage in each group. Results: Crocin nano-chitosan-coated administration significantly improved specific memory indicators compared to the Aß and other treated groups. A significant decrease in anxiety indicators was detected compared to the Aß and other treated groups. Finally, the results of hippocampus staining indicated a meaningful difference between the Aß group and other treated groups, compared to the crocin nano-chitosan-coated group. Conclusion: Treatment with low dosages of crocin in the nano-coated form exhibited great efficacy in reducing AD's adverse effects compared to the same dosage of intact crocin.

3.
PLoS One ; 17(12): e0277923, 2022.
Article in English | MEDLINE | ID: mdl-36480512

ABSTRACT

Tomatoes (Lycopersicun esculentum L.) are an important group of vegetable crops that have high economical and nutritional value. The use of fertilizers and appropriate substrates is one of the important strategies that can assist in increasing the yield and quality of fruits. The present study aimed to investigate the effects of exogenous seaweed extract (Nizamuddinia zanardinii), silicon (Na2SiO3), and selenium (Na2SeO3) on quality attributes and fruit yield (FY) of tomato under palm peat + perlite and coco peat + perlite substrates. Seaweed extract significantly improved several of the fruit quality attributes such as total carbohydrate content, total soluble solids (TSS), and pH as well as the FY. The results showed that silicon (Si) (75 mg) was the best foliar spray treatment to enhance the fruit firmness (30.46 N), fruit volume (196.8 cm3), and FY (3320.5 g). The highest amount of plant yield (3429.33 g) was obtained by the interaction effects of silicon (75 mg L-1) under the effect of palm peat. The use of selenium (Se) led to improvements in flavor index (TSS/TA). Also, the application of palm peat + perlite substrate caused an increase in vitamin C (16.62 mg/100g FW), compared to other substrates (14.27 mg/100g FW). The present study suggested that foliar spray with seaweed extract and Si had beneficial effects on the quality and FY of tomatoes. Also, the palm peat substrate can be used as a good alternative to the coco peat substrate in the hydroponic system.


Subject(s)
Selenium , Solanum lycopersicum , Fruit , Silicon , Plant Extracts/pharmacology
4.
Mol Biol Rep ; 48(10): 6797-6803, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34480686

ABSTRACT

BACKGROUND: The bulb onion (Allium cepa L.) is grown on all continents except Antarctica, and is prized by essentially all of the world's cultures for its flavor and health-enhancing attributes. Onion breeders focus primarily on bulb characteristics such as color, shape, soluble-solids content, pungency and flavor, storage ability, and health-enhancing attributes, as well as plant characters such as resistances to diseases. The use of breeding approaches, offers great promise for population improvement and hybrid development addressing changes in consumer preference and production environments. The aim of this study is to evaluate the storage and qualitative feature of modified Red Rey Iranian Onion. METHOD: Firstly, the modified population was obtained by the selection of superior bulbs, cultivation, its self-pollination and consequently the identification of the best families and implement open pollination between them. In next level, the Red Rey Iranian modified with basic population and Red Azar-shahr cultivar (comparative) was crossed. RESULTS: Our results showed that the selection procedure has leading to improvement in variety of traits in population. Also, the modified Red Rey is significantly superior to the base mass in qualitative traits such as: bulb stiffness, bulb dry matter, TSS, total sugar and glucose; So that the percentage of dry bulb content increased from 10.4% in the basal mass to 11.1% in the modified Red Rey; while spouring and rotting, minerals, and dry matter, vitamin C and fructose-reducing sugar was not affected by genotype. In the second step, resistances to Fusarium wilt disease (laboratory and molecular markers) were evaluated. Based on the results of phenotypic evaluation, the modified Red Rey had the lowest rate and level of infection and the highest score. According to the results of genotypic evaluation, there is a very high genetic affinity between resistant and susceptible cultivars.


Subject(s)
Disease Resistance/genetics , Fusarium/physiology , Onions/genetics , Onions/microbiology , Gene Expression Regulation, Plant , Genetic Markers , Iran , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism
5.
MedComm (2020) ; 1(1): 5-34, 2020 Jun.
Article in English | MEDLINE | ID: mdl-34766107

ABSTRACT

Tissue engineering and regenerative medicine follow a multidisciplinary attitude to the expansion and application of new materials for the treatment of different tissue defects. Typically, proper tissue regeneration is accomplished through concurrent biocompatibility and positive cellular activity. This can be resulted by the smart selection of platforms among bewildering arrays of structural possibilities with various porosity properties (ie, pore size, pore connectivity, etc). Among diverse porous structures, zeolite is known as a microporous tectosilicate that can potentially provide a biological microenvironment in tissue engineering applications. In addition, zeolite has been particularly appeared promising in wound dressing and bone- and tooth-oriented scaffolds. The wide range of composition and hierarchical pore structure renders the zeolitic materials a unique character, particularly, for tissue engineering purposes. Despite such unique features, research on zeolitic platforms for tissue engineering has not been classically presented. In this review, we overview, classify, and categorize zeolitic platforms employed in biological and tissue engineering applications.

6.
Materials (Basel) ; 12(23)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766663

ABSTRACT

There have been several attempts to improve the cellular and molecular interactions at the tissue-implant interface. Here, the biocompatibility of titanium-based implants (e.g., Grade 2 Titanium alloy (Ti-40) and titanium-niobium alloy (Ti-Nb)) has been assessed using different cellular and molecular examinations. Cell culture experiments were performed on three substrates: Ti-40, Ti-Nb, and tissue culture polystyrene as control. Cells number and growth rate were assessed by cell counting in various days and cell morphology was monitored using microscopic observations. The evaluation of cells' behavior on the surface of the implants paves the way for designing appropriate biomaterials for orthopedic and dental applications. It was observed that the cell growth rate on the control sample was relatively higher than that of the Ti-40 and Ti-Nb samples because of the coarse surface of the titanium-based materials. On the other hand, the final cell population was higher for titanium-based implants; this difference was attributed to the growth pattern, in which cells were not monolayered on the surface. Collagen I was not observed, while collagen III was secreted. Furthermore, interleukin (IL)-6 and vascular endothelial growth factor (VEGF) secretion were enhanced, and IL-8 secretion decreased. Moreover, various types of cells can be utilized with a series of substrates to unfold the cell behavior mechanism and cell-substrate interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...