Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 48(5): 1517-1530, 2023 May.
Article in English | MEDLINE | ID: mdl-36525123

ABSTRACT

Values of binding potentials (BPND) of dopamine D2/3 receptors differ in different regions of the brain, but we do not know with certainty how much of this difference is due either to different receptor numbers, or to different affinities of tracers to the receptors, or to both. We tested the claim that both striatal and extrastriatal dopamine D2/3 receptor availabilities vary with age in vivo in humans by determining the values of BPND of the specific radioligand [11C]raclopride. We determined values of BPND in striatal and extrastriatal volumes-of-interest (VOI) with the same specific receptor radioligand. We estimated values of BPND in individual voxels of brains of healthy volunteers in vivo, and we obtained regional averages of VOI by dynamic positron emission tomography (PET). We calculated average values of BPND in caudate nucleus and putamen of striatum, and in frontal, occipital, parietal, and temporal cortices of the forebrain, by means of four methods, including the ERLiBiRD (Estimation of Reversible Ligand Binding and Receptor Density) method, the tissue reference methods of Logan and Logan-Ichise, respectively, and the SRTM (Simplified Reference Tissue Method). Voxelwise generation of parametric maps of values of BPND used the multi-linear regression version of SRTM. Age-dependent changes of the binding potential presented with an inverted U-shape with peak binding potentials reached between the ages of 20 and 30. The estimates of BPND declined significantly with age after the peak in both striatal and extrastriatal regions, as determined by all four methods, with the greatest decline observed in posterior (occipital and parietal) cortices (14% per decade) and the lowest decline in caudate nucleus (3% per decade). The sites of the greatest declines are of particular interest because of the clinical implications.


Subject(s)
Dopamine , Receptors, Dopamine D2 , Humans , Adult , Young Adult , Dopamine/metabolism , Receptors, Dopamine D2/metabolism , Brain/diagnostic imaging , Brain/metabolism , Raclopride , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Positron-Emission Tomography/methods , Receptors, Dopamine D3/metabolism
2.
J Nucl Med ; 63(2): 294-301, 2022 02.
Article in English | MEDLINE | ID: mdl-34088774

ABSTRACT

We derived three widely used linearizations from the definition of receptor availability in molecular imaging with positron emission tomography (PET). The purpose of the present research was to determine the convergence of the results of the 3 methods in terms of 3 parameters-occupancy (s), distribution volume of the nondisplaceable reference binding compartment (VND), and nondisplaceable reference binding potential (BPND) of the radioligand-in the absence of a gold standard. We tested 104 cases culled from the literature and calculated the goodness of fit of the least-squares and Deming II methods of linear regression when applied to the determination of s, VND, and BPND using the goodness-of-fit parameters R2, coefficient of variation (root-mean-square error [RMSE]), and the infinity norm (‖X‖∞) with both regression methods. We observed superior convergence among the values of s, VND, and BPND for the inhibition and occupancy plots. The inhibition plot emerged as the plot with a slightly higher degree of convergence (based on R2, RMSE, and ‖X‖∞ value). With two regression methods (the least-squares method [LSM] and the Deming II [DM] method), the estimated values of s, VND, and BPND generally converged. The inhibition and occupancy plots yielded the best fits to the data, according to the goodness-of-fit parameters, due primarily to absence of commingling of the dependent and independent variables tested with the saturation (original Lassen) plot. In the presence of noise, the inhibition and occupancy plots yielded higher convergences.


Subject(s)
Brain , Radiopharmaceuticals , Brain/metabolism , Linear Models , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...