Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Talanta ; 146: 244-52, 2016.
Article in English | MEDLINE | ID: mdl-26695259

ABSTRACT

A magnetic ion-imprinted polymer (Fe3O4@TiO2@SiO2-IIP) functionalized with -NH groups for the selective determination of Co(II) ions from environmental and biological samples is presented. This sorbent was synthesized by surface imprinting technique combined with sol-gel process using 3-(2-aminoethylamino) propyltrimethoxysilane (AAPTS) as a functional ligand, tetraethyl orthosilicate as across-linking agent, and Co(II) ion as the template. The prepared magnetic ion-imprinted polymer was characterized by infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), dynamic light scattering (DLS), and X-ray diffraction (XRD). Fe3O4@TiO2@SiO2-IIP showed higher capacity and selectivity than that of Fe3O4@TiO2@SiO2-NIP. The important parameters influencing the recovery such as pH, the volume and eluent concentration, contact time, and the amount of sorbent on extraction percentage of Fe3O4@TiO2@SiO2-IIP were studied and optimized. The linear range (LR), relative standard deviation(RSD) and limit of detection (LOD=3 S(b)/m) for flame atomic absorption spectrometric determination of Co(II) ion, after its selective extraction by the prepared IIP polymer, were evaluated as 1-130 µg L(-1), 1.22% and 0.15 µg L(-1), respectively. The maximum capacity of Fe3O4@TiO2@SiO2-IIP and Fe3O4@TiO2@SiO2-NIP is 35.21 mg g(-1) and 10.34 mg g(-1), respectively. The separation factor of Fe3O4@TiO2@SiO2-IIP for Co(II)/Pb(II), Co(II)/Ni(II), and Co(II)/Cd(II) are 41.17, 79.74, and 56.48, respectively. In addition, the spent magnetic ion-imprinted polymer can be refreshed by simply washing with an aqueous HNO3 solution, and there is no significant decrease in adsorption capacity after a test of upto seven cycles, demonstrating that the Fe3O4@ TiO2@SiO2-IIP is stable and reusable.


Subject(s)
Cobalt/analysis , Environment , Magnets/chemistry , Molecular Imprinting , Polymers/chemistry , Polymers/chemical synthesis , Adsorption , Ammonia/chemistry , Animals , Calibration , Catalysis , Cobalt/chemistry , Cobalt/urine , Ferrosoferric Oxide/chemistry , Humans , Hydrogen-Ion Concentration , Milk/chemistry , Silicon Dioxide/chemistry , Time Factors
2.
J AOAC Int ; 94(1): 322-6, 2011.
Article in English | MEDLINE | ID: mdl-21391510

ABSTRACT

A method has been established for simultaneous determination of sodium sulfate, sodium carbonate, and sodium tripolyphosphate in detergent washing powder samples based on attenuated total reflectance Fourier transform IR spectrometry in the mid-IR spectral region (800-1550 cm(-1)). Genetic algorithm (GA) wavelength selection followed by feed forward back-propagation artificial neural network (BP-ANN) was the chemometric approach. Root mean square error of prediction for BP-ANN and GA-BP-ANN was 0.0051 and 0.0048, respectively. The proposed method is simple, with no tedious pretreatment step, for simultaneous determination of the above-mentioned components in commercial washing powder samples.


Subject(s)
Detergents/chemistry , Neural Networks, Computer , Spectroscopy, Fourier Transform Infrared/methods , Algorithms , Carbonates/analysis , Least-Squares Analysis , Nonlinear Dynamics , Polyphosphates/analysis , Powders , Sulfates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL