Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(3): 1560-1575, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36721770

ABSTRACT

The performance of different density functional tight binding (DFTB) methods for the description of six increasingly complex metal-organic framework (MOF) compounds have been assessed. In particular the self-consistent charge density functional tight binding (SCC DFTB) approach utilizing the 3ob and matsci parameter sets have been considered for a set of four Zn-based and two Al-based MOF systems. Moreover, the extended tight binding for geometries, frequencies, and noncovalent interactions (GFN2-xTB) approach has been considered as well. In addition to the application of energy minimizations of the respective unit cells, molecular dynamics (MD) simulations at constant temperature and pressure conditions (298.15 K, 1.013 bar) have been carried out to assess the performance of the different DFTB methods at nonzero thermal conditions. In order to obtain the XRD patterns from the MD simulations, a flexible workflow to obtain time-averaged XRD patterns from (in this study 5000) individual snapshots taken at regular intervals over the simulation trajectory has been applied. In addition, the comparison of pair-distribution functions (PDFs) directly accessible from the simulation data shows very good agreement with experimental reference data obtained via measurements employing synchrotron radiation in case of MOF-5. The comparison of the lattice constants and the associated X-ray diffraction (XRD) patterns with the experimental reference data demonstrate, that the SCC DFTB approach provides a highly efficient and accurate description of the target systems.

2.
J Colloid Interface Sci ; 637: 207-215, 2023 May.
Article in English | MEDLINE | ID: mdl-36701866

ABSTRACT

HYPOTHESIS: The key to prepare a mesostructured porous material by a soft-template route coupled to a colloidal sol-gel process is to control the surfactant-colloid interface. In the case of tetravalent actinide ions, their high reactivity in aqueous media always leads to uncontrolled and irreversible condensation. The addition of a complexing agent to the sol may moderate these reactions and enhances the interaction between the colloids and the surfactant to in fine prepare a mesostructured nanoporous actinide oxide material. EXPERIMENTS: Several colloidal sols were prepared without and with formic acid as complexing agent by varying the molar ratios between thorium, carboxylic surfactant and pH. Small and Wide Angle X-ray Scattering were used to characterize the nature of the colloids, their interaction with the surfactant and the final ThO2 materials. FINDINGS: Depending on the colloid nature, hexagonal or worm-like hybrid mesophase is formed. The thermal treatment of the worm-like mesophase with a sufficient amount of Th-formic acid hexameric species coated at the surface of surfactant micelles generates micrometric ThO2 nanofibers. This material having an accessible porosity opens new perspectives to be impregnated with minor actinide solutions offering a promising safety method for the fabrication of mixed oxide nuclear fuel and the minor actinide transmutation.

3.
ACS Appl Mater Interfaces ; 14(47): 53165-53173, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36383750

ABSTRACT

The identification of new colloidal sol-gel routes for the preparation of actinide oxides, which have a homogeneous and accessible porosity that can easily be impregnated by any concentrated actinide solution, opens new perspectives for the preparation of homogeneous nuclear fuel for minor actinide transmutation. This homogeneity allows us to avoid "hot spot" formation due to the local accumulation of more fissile elements. Here, we report the preparation of macro-microporous ThO2 materials by a colloidal sol-gel route. Using a thorium salt with 6-aminocaproic acid as a complexing agent at a controlled pH, we were able to pilot the condensation of thorium hydroxo species forming colloids of tuned nanometric size and thus the sol stability. After a freeze-drying process to concentrate colloids and a thermal treatment allowing complexing agent removal and macroporosity formation by a brutal gas release during combustion, a loose packing of ThO2 nanoparticles with an ordered distribution of interparticular porosity and a fraction of nanometric crystallites, whose size depends on the initial colloidal size, were obtained. The sols, pastes, and final materials were characterized by small- and wide-angle X-ray scattering to determine the colloidal size and the final structure of the materials, which was also confirmed by transmission electron microscopy. The most promising material was finally successfully impregnated by a simulating minor actinide solution and thermally treated to prepare a mixed actinide oxide material. This safe technology, relying on the colloidal sol-gel process and the formulation of complex fluids forming tunable precursors, opens new perspectives for the reuse of nuclear waste solutions as new fuel.

4.
Acta Crystallogr A Found Adv ; 76(Pt 5): 589-599, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32869757

ABSTRACT

Temperature-dependent total X-ray scattering measurements for water confined in bioactive glass samples with 5.9 nm pore diameter have been performed. Based on these experimental data, simulations were carried out using the Empirical Potential Structure Refinement (EPSR) code, in order to study the structural organization of the confined water in detail. The results indicate a non-homogeneous structure for water inside the pore, with three different structural organizations of water, depending on the distance from the pore surface: (i) a first layer (4 Å) of interfacial pore water that forms a strong chemical bond with the substrate, (ii) intermediate pore water forming a second layer (4-11 Å) on top of the interfacial pore water, (iii) bulk-like pore water in the centre of the pores. Analysis of the simulated site-site partial pair distribution function shows that the water-silica (Ow-Si) pair correlations occur at ∼3.75 Å. The tetrahedral network of bulk water with oxygen-oxygen (Ow-Ow) hydrogen-bonded pair correlations at ∼2.8, ∼4.1 and ∼4.5 Šis strongly distorted for the interfacial pore water while the second neighbour pair correlations are observed at ∼4.0 and ∼4.9 Å. For the interfacial pore water, an additional Ow-Ow pair correlation appears at ∼3.3 Å, which is likely caused by distortions due to the interactions of the water molecules with the silica at the pore surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...