Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10187, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702381

ABSTRACT

Neurexins (Nrxns) are critical for synapse organization and their mutations have been documented in autism spectrum disorder, schizophrenia, and epilepsy. We recently reported that conditional deletion of Nrxn2, under the control of Emx1Cre promoter, predominately expressed in the neocortex and hippocampus (Emx1-Nrxn2 cKO mice) induced stereotyped patterns of behavior in mice, suggesting behavioral inflexibility. In this study, we investigated the effects of Nrxn2 deletion through two different conditional approaches targeting presynaptic cortical neurons projecting to dorsomedial striatum on the flexibility between goal-directed and habitual actions in response to devaluation of action-outcome (A-O) contingencies in an instrumental learning paradigm or upon reversal of A-O contingencies in a water T-maze paradigm. Nrxn2 deletion through both the conditional approaches induced an inability of mice to discriminate between goal-directed and habitual action strategies in their response to devaluation of A-O contingency. Emx1-Nrxn2 cKO mice exhibited reversal learning deficits, indicating their inability to adopt new action strategies. Overall, our studies showed that Nrxn2 deletion through two distinct conditional deletion approaches impaired flexibility in response to alterations in A-O contingencies. These investigations can lay the foundation for identification of novel genetic factors underlying behavioral inflexibility.


Subject(s)
Behavior, Animal , Mice, Knockout , Nerve Tissue Proteins , Transcription Factors , Animals , Mice , Nerve Tissue Proteins/genetics , Male , Neural Cell Adhesion Molecules/genetics , Gene Deletion , Maze Learning/physiology , Reversal Learning/physiology , Homeodomain Proteins/genetics , Hippocampus/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Conditioning, Operant
2.
Front Synaptic Neurosci ; 15: 1128640, 2023.
Article in English | MEDLINE | ID: mdl-37091877

ABSTRACT

Early life adversity (ELA) is a major health burden in the United States, with 62% of adults reporting at least one adverse childhood experience. These experiences during critical stages of brain development can perturb the development of neural circuits that mediate sensory cue processing and behavioral regulation. Recent studies have reported that ELA impaired the maturation of dendritic spines on neurons in the dorsolateral striatum (DLS) but not in the dorsomedial striatum (DMS). The DMS and DLS are part of two distinct corticostriatal circuits that have been extensively implicated in behavioral flexibility by regulating and integrating action selection with the reward value of those actions. To date, no studies have investigated the multifaceted effects of ELA on aspects of behavioral flexibility that require alternating between different action selection strategies or higher-order cognitive processes, and the underlying synaptic transmission in corticostriatal circuitries. To address this, we employed whole-cell patch-clamp electrophysiology to assess the effects of ELA on synaptic transmission in the DMS and DLS. We also investigated the effects of ELA on the ability to update action control in response to outcome devaluation in an instrumental learning paradigm and reversal of action-outcome contingency in a water T-maze paradigm. At the circuit level, ELA decreased corticostriatal glutamate transmission in male but not in female mice. Interestingly, in DMS, glutamate transmission is decreased in male ELA mice, but increased in female ELA mice. ELA impaired the ability to update action control in response to reward devaluation in a context that promotes goal-directedness in male mice and induced deficits in reversal learning. Overall, our findings demonstrate the sex- and region-dependent effects of ELA on behavioral flexibility and underlying corticostriatal glutamate transmission. By establishing a link between ELA and circuit mechanisms underlying behavioral flexibility, our findings will begin to identify novel molecular mechanisms that can represent strategies for treating behavioral inflexibility in individuals who experienced early life traumatic incidents.

3.
Front Mol Neurosci ; 16: 1125087, 2023.
Article in English | MEDLINE | ID: mdl-36923655

ABSTRACT

Over the past 3 decades, the prevalence of autism spectrum disorder (ASD) has increased globally from 20 to 28 million cases making ASD the fastest-growing developmental disability in the world. Neurexins are a family of presynaptic cell adhesion molecules that have been increasingly implicated in ASD, as evidenced by genetic mutations in the clinical population. Neurexins function as context-dependent specifiers of synapse properties and critical modulators in maintaining the balance between excitatory and inhibitory transmission (E/I balance). Disrupted E/I balance has long been established as a hallmark of ASD making neurexins excellent starting points for understanding the etiology of ASD. Herein we review neurexin mutations that have been discovered in ASD patients. Further, we discuss distinct synaptic mechanisms underlying the aberrant neurotransmission and behavioral deficits observed in different neurexin mouse models, with focus on recent discoveries from the previously overlooked neurexin-2 gene (Nrxn2 in mice and NRXN2 in humans). Hence, the aim of this review is to provide a summary of new synaptic insights into the molecular underpinnings of ASD.

4.
Transl Psychiatry ; 13(1): 97, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941261

ABSTRACT

Neurexins (Nrxns) have been extensively studied for their role in synapse organization and have been linked to many neuropsychiatric disorders, including autism spectrum disorder (ASD), and epilepsy. However, no studies have provided direct evidence that Nrxns may be the key regulator in the shared pathogenesis of these conditions largely due to complexities among Nrxns and their non-canonical functions in different synapses. Recent studies identified NRXN2 mutations in ASD and epilepsy, but little is known about Nrxn2's role in a circuit-specific manner. Here, we report that conditional deletion of Nrxn2 from the hippocampus and cortex (Nrxn2 cKO) results in behavioral abnormalities, including reduced social preference and increased nestlet shredding behavior. Electrophysiological recordings identified an overall increase in hippocampal CA3→CA1 network activity in Nrxn2 cKO mice. Using intracranial electroencephalogram recordings, we observed unprovoked spontaneous reoccurring electrographic and behavioral seizures in Nrxn2 cKO mice. This study provides the first evidence that conditional deletion of Nrxn2 induces increased network activity that manifests into spontaneous recurrent seizures and behavioral impairments.


Subject(s)
Hippocampus , Seizures , Mice, Inbred C57BL , Animals , Mice , Mice, Knockout , Nerve Net/metabolism , Seizures/genetics , Seizures/metabolism , Hippocampus/metabolism , Male , Female , Homing Behavior , Sex Characteristics , Synaptic Transmission
5.
Alcohol ; 86: 1-8, 2020 08.
Article in English | MEDLINE | ID: mdl-32278067

ABSTRACT

Alcohol use disorder (AUD) has a major national impact, affecting over 18 million people, causing approximately 88,000 deaths, and costing upward of $250 billion annually in the United States. Unfortunately, FDA-approved AUD pharmaceuticals are few, and clinical benefits are mostly ineffective in patients suffering from AUD. Therefore, the identification of novel targets and/or innovative methods for the development of safe and effective medications represents a critical public health need. Previously, we reported that avermectin compounds (ivermectin [IVM] and moxidectin [MOX]) significantly reduced ethanol intake in male and female mice. However, avermectin compounds are readily effluxed by P-glycoprotein (Pgp/ABCB1) in the blood-brain barrier (BBB), resulting in reduced retention time by the drugs in the central nervous system (CNS). As such, the doses of IVM or MOX and the time frame for significant reductions of ethanol intake are not ideal. Here we evaluate a novel combinatorial strategy involving IVM and tariquidar (TQ), a third-generation efflux inhibitor of Pgp, to reduce the dosing necessary for improving alcohol (ethanol) consumption behavior. We tested male C57BL/6J mice using a two-bottle choice study to evaluate ethanol consumption and preference. We found that injecting 10 mg/kg of TQ 30 min prior to IVM resulted in a five-fold improvement in the efficacy of IVM (dosed at 0.5 mg/kg), resulting in a significant reduction in ethanol intake and preference. Notably, the reduction by IVM was well tolerated, and no adverse effects were identified when tested at doses ranging from 0.50 mg/kg to 2.0 mg/kg. Collectively, our findings indicate that IVM, in combination with TQ, increases its efficacy in the CNS for reducing ethanol consumption. This work demonstrates a novel combinatorial drug strategy that allows new opportunities for drugs with poor CNS retention, such as IVM, to demonstrate improved potency and potentially improved safety.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/therapeutic use , Alcohol Drinking/drug therapy , Alcoholism/drug therapy , Ivermectin/therapeutic use , Animals , Ethanol/administration & dosage , Male , Mice , Mice, Inbred C57BL
6.
Front Cell Neurosci ; 13: 331, 2019.
Article in English | MEDLINE | ID: mdl-31396053

ABSTRACT

Sensorimotor gating refers to the ability to filter incoming sensory information in a stimulus-laden environment and disruption of this physiological process has been documented in psychiatric disorders characterized by cognitive aberrations. The effectiveness of current pharmacotherapies for treatment of sensorimotor gating deficits in the patient population still remains controversial. These challenges emphasize the need to better understand the biological underpinnings of sensorimotor gating which could lead to discovery of novel drug targets for therapeutic intervention. Notably, we recently reported a role for purinergic P2X4 receptors (P2X4Rs) in regulation of sensorimotor gating using prepulse inhibition (PPI) of acoustic startle reflex. P2X4Rs are ion channels gated by adenosine-5'-triphosphate (ATP). Ivermectin (IVM) induced PPI deficits in C57BL/6J mice in a P2X4R-specific manner. Furthermore, mice deficient in P2X4Rs [P2X4R knockout (KO)] exhibited PPI deficits that were alleviated by dopamine (DA) receptor antagonists demonstrating an interaction between P2X4Rs and DA receptors in PPI regulation. On the basis of these findings, we hypothesized that increased DA neurotransmission underlies IVM-mediated PPI deficits. To test this hypothesis, we measured the effects of D1 and D2 receptor antagonists, SCH 23390 and raclopride respectively and D1 agonist, SKF 82958 on IVM-mediated PPI deficits. To gain mechanistic insights, we investigated the interaction between IVM and dopaminergic drugs on signaling molecules linked to PPI regulation in the ventral striatum. SCH 23390 significantly attenuated the PPI disruptive effects of IVM to a much greater degree than that of raclopride. SKF 82958 failed to potentiate IVM-mediated PPI disruption. At the molecular level, modulation of D1 receptors altered IVM's effects on dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa (DARPP-32) phosphorylation. Additionally, IVM interacted with the DA receptors antagonists and SKF 82958 in phosphorylation of Ca2+/calmodulin kinase IIα (CaMKIIα) and its downstream target, neuronal nitric oxide synthase (nNOS). Current findings suggest an involvement for D1 and D2 receptors in IVM-mediated PPI disruption via modulation of DARPP-32, CaMKIIα and nNOS. Taken together, the findings suggest that stimulation of P2X4Rs can lead to DA hyperactivity and disruption of information processing, implicating P2X4Rs as a novel drug target for treatment of psychiatric disorders characterized by sensorimotor gating deficits.

7.
Psychopharmacology (Berl) ; 235(6): 1697-1709, 2018 06.
Article in English | MEDLINE | ID: mdl-29500584

ABSTRACT

The deleterious effects of alcohol use disorders (AUDs) on human health have been documented worldwide. The enormous socioeconomic burden coupled with lack of efficacious pharmacotherapies underlies the need for improved treatment strategies. At present, there is a growing body of preclinical evidence that demonstrates the potential of avermectins [ivermectin (IVM), selamectin (SEL), abamectin (ABM), and moxidectin (MOX)] in treatment of AUDs. Avermectins are derived by fermentation of soil micro-organism, Streptomyces avermitilis, and have been extensively used for treatment of parasitic infections. From the mechanistic standpoint, avermectins are positive modulators of purinergic P2X4 receptors (P2X4Rs). P2X4Rs belong to P2X superfamily of cation-permeable ion channels gated by adenosine 5'-triphosphate (ATP). Building evidence has implicated a role for P2X4Rs in regulation of ethanol intake and that ethanol can inhibit ATP-gated currents in P2X4Rs. Investigations using recombinant cell models and animal models of alcohol drinking have reported that IVM, ABM, and MOX, but not SEL, were able to antagonize the inhibitory effects of ethanol on P2X4Rs in vitro and reduce ethanol intake in vivo. Furthermore, IVM was shown to reduce ethanol consumption via P2X4R potentiation in vivo, supporting the involvement of P2X4Rs in IVM's anti-alcohol effects and that P2X4Rs can be used as a platform for developing novel anti-alcohol compounds. Taken together, these findings support the utility of avermectins as a novel class of drug candidates for treatment of AUDs.


Subject(s)
Alcoholism/drug therapy , Drug Discovery/methods , Ivermectin/analogs & derivatives , Alcoholism/metabolism , Animals , Drug Evaluation, Preclinical/methods , Ethanol/administration & dosage , Humans , Ivermectin/metabolism , Ivermectin/therapeutic use , Receptors, Purinergic P2X4/metabolism
8.
Alcohol ; 68: 63-70, 2018 05.
Article in English | MEDLINE | ID: mdl-29477921

ABSTRACT

Purinergic P2X4 receptors (P2X4Rs) belong to the P2X superfamily of ionotropic receptors that are gated by adenosine 5'-triphosphate (ATP). Accumulating evidence indicates that P2X4Rs play an important role in regulation of ethanol intake. At the molecular level, ethanol's inhibitory effects on P2X4Rs are antagonized by ivermectin (IVM), in part, via action on P2X4Rs. Behaviorally, male mice deficient in the p2rx4 gene (P2X4R knockout [KO]) have been shown to exhibit a transient increase in ethanol intake over a period of 4 days, as demonstrated by social and binge drinking paradigms. Furthermore, IVM reduced ethanol consumption in male and female rodents, whereas male P2X4R KO mice were less sensitive to the anti-alcohol effects of IVM, compared to wildtype (WT) mice, further supporting a role for P2X4Rs as targets of IVM's action. The current investigation extends testing the hypothesis that P2X4Rs play a role in regulation of ethanol intake. First, we tested the response of P2X4R KO mice to ethanol for a period of 5 weeks. Second, to gain insights into the changes in ethanol intake, we employed a lentivirus-shRNA (LV-shRNA) methodology to selectively knockdown P2X4R expression in the nucleus accumbens (NAc) core in male C57BL/6J mice. In agreement with our previous study, male P2X4R KO mice exhibited higher ethanol intake than WT mice. Additionally, reduced expression of P2X4Rs in the NAc core significantly increased ethanol intake and preference. Collectively, the findings support the hypothesis that P2X4Rs play a role in regulation of ethanol intake and that P2X4Rs represent a novel drug target for treatment of alcohol use disorder.


Subject(s)
Alcohol Drinking/genetics , Receptors, Purinergic P2X4/genetics , Alcohol Drinking/psychology , Alcoholism/genetics , Alcoholism/psychology , Animals , Binge Drinking/genetics , Binge Drinking/psychology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microinjections , Nucleus Accumbens/metabolism , RNA, Small Interfering/genetics , Receptors, Purinergic P2X4/biosynthesis
9.
J Neurosci ; 36(34): 8902-20, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27559172

ABSTRACT

UNLABELLED: P2X4 receptors are ATP-gated cation channels that are widely expressed in the nervous system. To identify P2X4 receptor-expressing cells, we generated BAC transgenic mice expressing tdTomato under the control of the P2X4 receptor gene (P2rx4). We found sparse populations of tdTomato-positive neurons in most brain areas with patterns that matched P2X4 mRNA distribution. tdTomato expression within microglia was low but was increased by an experimental manipulation that triggered microglial activation. We found surprisingly high tdTomato expression in the hypothalamic arcuate nucleus (Arc) (i.e., within parts of the neural circuitry controlling feeding). Immunohistochemistry and genetic crosses of P2rx4 tdTomato mice with cell-specific GFP reporter lines showed that the tdTomato-expressing cells were mainly AgRP-NPY neurons and tanycytes. There was no electrophysiological evidence for functional expression of P2X4 receptors on AgRP-NPY neuron somata, but instead, we found clear evidence for functional presynaptic P2X4 receptor-mediated responses in terminals of AgRP-NPY neurons onto two of their postsynaptic targets (Arc POMC and paraventricular nucleus neurons), where ATP dramatically facilitated GABA release. The presynaptic responses onto POMC neurons, and the expression of tdTomato in AgRP-NPY neurons and tanycytes, were significantly decreased by food deprivation in male mice in a manner that was partially reversed by the satiety-related peptide leptin. Overall, we provide well-characterized tdTomato reporter mice to study P2X4-expressing cells in the brain, new insights on feeding-related regulation of presynaptic P2X4 receptor responses, and the rationale to explore extracellular ATP signaling in the control of feeding behaviors. SIGNIFICANCE STATEMENT: Cells expressing ATP-gated P2X4 receptors have proven problematic to identify and study in brain slice preparations because P2X4 expression is sparse. To address this limitation, we generated and characterized BAC transgenic P2rx4 tdTomato reporter mice. We report the distribution of tdTomato-expressing cells throughout the brain and particularly strong expression in the hypothalamic arcuate nucleus. Together, our studies provide a new, well-characterized tool with which to study P2X4 receptor-expressing cells. The electrophysiological studies enabled by this mouse suggest previously unanticipated roles for ATP and P2X4 receptors in the neural circuitry controlling feeding.


Subject(s)
Brain/cytology , Eating/physiology , Luminescent Proteins/metabolism , Neurons/metabolism , Receptors, Purinergic P2X4/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Brain/drug effects , Eating/drug effects , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Food Deprivation/physiology , Ghrelin/pharmacology , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , In Vitro Techniques , Leptin/pharmacology , Lipopolysaccharides/pharmacology , Luminescent Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neuropeptide Y/metabolism , Neurotransmitter Agents/pharmacology , Patch-Clamp Techniques , Platelet Aggregation Inhibitors/pharmacology , Pro-Opiomelanocortin/metabolism , RNA, Messenger/metabolism , Receptors, Purinergic P2X4/genetics , Statistics, Nonparametric , Up-Regulation/drug effects , Up-Regulation/genetics , gamma-Aminobutyric Acid/metabolism
10.
J Neurochem ; 139(1): 134-48, 2016 10.
Article in English | MEDLINE | ID: mdl-27402173

ABSTRACT

Purinergic P2X4 receptors (P2X4Rs) belong to the P2X superfamily of ion channels regulated by ATP. We recently demonstrated that P2X4R knockout (KO) mice exhibited deficits in sensorimotor gating, social interaction, and ethanol drinking behavior. Dopamine (DA) dysfunction may underlie these behavioral changes, but there is no direct evidence for P2X4Rs' role in DA neurotransmission. To test this hypothesis, we measured markers of DA function and dependent behaviors in P2X4R KO mice. P2X4R KO mice exhibited altered density of pre-synaptic markers including tyrosine hydroxylase, dopamine transporter; post-synaptic markers including dopamine receptors and phosphorylation of downstream targets including dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa and cyclic-AMP-response element binding protein in different parts of the striatum. Ivermectin, an allosteric modulator of P2X4Rs, significantly affected dopamine and cyclic AMP regulated phosphoprotein of 32 kDa and extracellular regulated kinase1/2 phosphorylation in the striatum. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Using the 6-hydroxydopamine model of DA depletion, P2X4R KO mice exhibited an attenuated levodopa (L-DOPA)-induced motor behavior, whereas ivermectin enhanced this behavior. Collectively, these findings identified an important role for P2X4Rs in maintaining DA homeostasis and illustrate how this association is important for CNS functions including motor control and sensorimotor gating. We propose that P2X4 receptors (P2X4Rs) regulate dopamine (DA) homeostasis and associated behaviors. Pre-synaptic and post-synaptic DA markers were significantly altered in the dorsal and ventral striatum of P2X4R KO mice, implicating altered DA neurotransmission. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Ivermectin (IVM), a positive modulator of P2X4Rs, enhanced levodopa (L-DOPA)-induced motor behavior. These studies highlight potential interactions between P2X4Rs and DA system.


Subject(s)
Behavior, Animal , Corpus Striatum/metabolism , Dopamine/metabolism , Receptors, Purinergic P2X4/drug effects , Receptors, Purinergic P2X4/physiology , Alcohol Drinking/genetics , Alcohol Drinking/psychology , Animals , Corpus Striatum/drug effects , Dopamine Agents/pharmacology , Homeostasis/genetics , Interpersonal Relations , Ivermectin/pharmacology , Levodopa/pharmacology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Oxidopamine , Reflex, Startle/drug effects , Synaptic Transmission/genetics
11.
J Neuroimmunol ; 285: 169-79, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26198936

ABSTRACT

The present investigation tested the role of ATP-activated P2X7 receptors (P2X7Rs) in alcohol-induced brain damage using a model that combines intragastric (iG) ethanol feeding and high fat diet in C57BL/6J mice (Hybrid). The Hybrid paradigm caused increased levels of pro-inflammatory markers, changes in microglia and astrocytes, reduced levels of neuronal marker NeuN and increased P2X7R expression in ethanol-sensitive brain regions. Observed changes in P2X7R and NeuN expression were more pronounced in Hybrid paradigm with inclusion of additional weekly binges. In addition, high fat diet during Hybrid exposure aggravated the increase in P2X7R expression and activation of glial cells.


Subject(s)
Diet, High-Fat/adverse effects , Ethanol/administration & dosage , Inflammation Mediators/metabolism , Neurons/metabolism , Receptors, Purinergic P2X7/biosynthesis , Up-Regulation/physiology , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Cell Count/methods , Ethanol/toxicity , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/pathology , Up-Regulation/drug effects
12.
Neurochem Res ; 39(6): 1127-39, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24671605

ABSTRACT

P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular adenosine 5'-triphosphate. The P2X4 subtype is abundantly expressed in the central nervous system and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol's effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-h and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50 % less in the P2X4R KO mice. Western blot analysis identified significant changes in γ-aminobutyric acidA receptor α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems.


Subject(s)
Alcohol Drinking/metabolism , Ethanol/administration & dosage , Receptors, Purinergic P2X4/deficiency , Alcohol Drinking/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Purinergic P2X4/genetics
13.
Int J Neuropsychopharmacol ; 17(6): 907-16, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24451653

ABSTRACT

Our laboratory is investigating ivermectin (IVM) and other members of the avermectin family as new pharmaco-therapeutics to prevent and/or treat alcohol use disorders (AUDs). Earlier work found that IVM significantly reduced ethanol intake in mice and that this effect likely reflects IVM's ability to modulate ligand-gated ion channels. We hypothesized that structural modifications that enhance IVM's effects on key receptors and/or increase its brain concentration should improve its anti-alcohol efficacy. We tested this hypothesis by comparing the abilities of IVM and two other avermectins, abamectin (ABM) and selamectin (SEL), to reduce ethanol intake in mice, to alter modulation of GABAARs and P2X4Rs expressed in Xenopus oocytes and to increase their ability to penetrate the brain. IVM and ABM significantly reduced ethanol intake and antagonized the inhibitory effects of ethanol on P2X4R function. In contrast, SEL did not affect either measure, despite achieving higher brain concentrations than IVM and ABM. All three potentiated GABAAR function. These findings suggest that chemical structure and effects on receptor function play key roles in the ability of avermectins to reduce ethanol intake and that these factors are more important than brain penetration alone. The direct relationship between the effect of these avermectins on P2X4R function and ethanol intake suggest that the ability to antagonize ethanol-mediated inhibition of P2X4R function may be a good predictor of the potential of an avermectin to reduce ethanol intake and support the use of avermectins as a platform for developing novel drugs to prevent and/or treat AUDs.


Subject(s)
Alcohol Drinking/drug therapy , Alcohol Drinking/physiopathology , Excitatory Amino Acid Agonists/pharmacology , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Alcohol-Related Disorders/prevention & control , Animals , Brain/drug effects , Brain/physiopathology , Central Nervous System Depressants/administration & dosage , Central Nervous System Depressants/pharmacology , Ethanol/administration & dosage , Ethanol/pharmacology , Excitatory Amino Acid Agonists/chemistry , Excitatory Amino Acid Agonists/pharmacokinetics , Ivermectin/chemistry , Ivermectin/pharmacokinetics , Male , Mice, Inbred C57BL , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Receptors, Purinergic P2X4/genetics , Receptors, Purinergic P2X4/metabolism , Xenopus
14.
Neuropsychopharmacology ; 38(10): 1993-2002, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23604007

ABSTRACT

Purinergic P2X receptors are a family of ligand-gated ion channels gated by extracellular adenosine 5'-triphosphate (ATP). Of the seven P2X subtypes, P2X4 receptors (P2X4Rs) are richly expressed in the brain, yet their role in behavioral organization remains poorly understood. In this study, we examined the behavioral responses of P2X4R heterozygous (HZ) and knockout (KO) mice in a variety of testing paradigms designed to assess complementary aspects of sensory functions, emotional reactivity, and cognitive organization. P2X4R deficiency did not induce significant alterations of locomotor activity and anxiety-related indices in the novel open field and elevated plus-maze tests. Conversely, P2X4R KO mice displayed marked deficits in acoustic startle reflex amplitude, as well as significant sensorimotor gating impairments, as assessed by the prepulse inhibition of the startle. In addition, P2X4R KO mice displayed enhanced tactile sensitivity, as signified by a lower latency in the sticky-tape removal test. Moreover, both P2X4R HZ and KO mice showed significant reductions in social interaction and maternal separation-induced ultrasonic vocalizations in pups. Notably, brain regions of P2X4R KO mice exhibited significant brain-regional alterations in the subunit composition of glutamate ionotropic receptors. These results collectively document that P2X4-deficient mice exhibit a spectrum of phenotypic abnormalities partially akin to those observed in other murine models of autism-spectrum disorder. In conclusion, our findings highlight a putative role of P2X4Rs in the regulation of perceptual and sociocommunicative functions and point to these receptors as putative targets for disturbances associated with neurodevelopmental disorders.


Subject(s)
Motor Activity/physiology , Olfactory Perception , Receptors, Purinergic P2X4/physiology , Social Behavior , Vocalization, Animal/physiology , Animals , Brain/metabolism , Brain/physiology , Exploratory Behavior/physiology , Heterozygote , Male , Maternal Deprivation , Maze Learning/physiology , Memory, Short-Term/physiology , Mice , Mice, Knockout , Olfactory Perception/physiology , Protein Subunits/metabolism , Receptors, Ionotropic Glutamate/metabolism , Receptors, Purinergic P2X4/genetics , Reflex, Startle/physiology , Sensory Gating/physiology , Touch Perception/physiology
15.
Int J Neuropsychopharmacol ; 16(5): 1059-70, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23174033

ABSTRACT

Purinergic ionotropic P2X receptors are a family of cation-permeable channels that bind extracellular adenosine 5'-triphosphate. In particular, convergent lines of evidence have recently highlighted P2X(4) receptors as a potentially critical target in the regulation of multiple nervous and behavioural functions, including pain, neuroendocrine regulation and hippocampal plasticity. Nevertheless, the role of the P2X(4) receptor in behavioural organization remains poorly investigated. To study the effects of P2X(4) activation, we tested the acute effects of its potent positive allosteric modulator ivermectin (IVM, 2.5-10 mg/kg i.p.) on a broad set of paradigms capturing complementary aspects of perceptual, emotional and cognitive regulation in mice. In a novel open field, IVM did not induce significant changes in locomotor activity, but increased the time spent in the peripheral zone. In contrast, IVM produced anxiolytic-like effects in the elevated plus maze and marble burying tasks, as well as depression-like behaviours in the tail-suspension and forced swim tests. The agent induced no significant behavioural changes in the conditioned place preference test and in the novel object recognition task. Finally, the drug induced a dose-dependent decrease in sensorimotor gating, as assessed by pre-pulse inhibition (PPI) of the acoustic startle reflex. In P2X(4) knockout mice, the effects of IVM in the open field and elevated plus maze were similar to those observed in wild type mice; conversely, the drug significantly increased startle amplitude and failed to reduce PPI. Taken together, these results suggest that P2X(4) receptors may play a role in the regulation of sensorimotor gating.


Subject(s)
Behavior, Animal/drug effects , Insecticides/pharmacology , Ivermectin/pharmacology , Receptors, Purinergic P2X4/metabolism , Animals , Conditioning, Operant/drug effects , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Hindlimb Suspension , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Pain Measurement/drug effects , Psychomotor Performance/drug effects , Receptors, Purinergic P2X4/deficiency , Sensory Gating/drug effects , Statistics, Nonparametric , Swimming
16.
Neuropharmacology ; 63(2): 190-201, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22465817

ABSTRACT

The high rate of therapeutic failure in the management of alcohol use disorders (AUDs) underscores the urgent need for novel and effective strategies that can deter ethanol consumption. Recent findings from our group showed that ivermectin (IVM), a broad-spectrum anthelmintic with high tolerability and optimal safety profile in humans and animals, antagonized ethanol-mediated inhibition of P2X4 receptors (P2X4Rs) expressed in Xenopus oocytes. This finding prompted us to hypothesize that IVM may reduce alcohol consumption; thus, in the present study we investigated the effects of this agent on several models of alcohol self-administration in male and female C57BL/6 mice. Overall, IVM (1.25-10 mg/kg, intraperitoneal) significantly reduced 24-h alcohol consumption and intermittent limited access (4-h) binge drinking, and operant alcohol self-administration (1-h). The effects on alcohol intake were dose-dependent with the significant reduction in intake at 9 h after administration corresponding to peak IVM concentrations (C(max)) in the brain. IVM also produced a significant reduction in 24-h saccharin consumption, but did not alter operant sucrose self-administration. Taken together, the findings indicate that IVM reduces alcohol intake across several different models of self-administration and suggest that IVM may be useful in the treatment of AUDs.


Subject(s)
Alcohol Drinking/drug therapy , Antiparasitic Agents/pharmacology , Choice Behavior/drug effects , Conditioning, Operant/drug effects , Drinking Behavior/drug effects , Ethanol/administration & dosage , Ivermectin/pharmacology , Animals , Antiparasitic Agents/therapeutic use , Dose-Response Relationship, Drug , Female , Ivermectin/therapeutic use , Male , Mice , Mice, Inbred C57BL , Self Administration , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...