Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 10: 1172403, 2023.
Article in English | MEDLINE | ID: mdl-37214337

ABSTRACT

Introduction: Foodborne trichothecene T-2 Toxin, is a highly toxic metabolite produced by Fusarium species contaminating animal and human food, causing multiple organ failure and health hazards. T-2 toxins induce hepatotoxicity via oxidative stress causing hepatocytes cytotoxicity and genotoxicity. In this study, curcumin and taurine were investigated and compared as antioxidants against T-2-provoked hepatotoxicity. Methods: Wistar rats were administrated T-2 toxin sublethal oral dose (0.1 mg/kg) for 2 months, followed by curcumin (80 mg/kg) and taurine (50 mg/kg) for 3 weeks. Biochemical assessment of liver enzymes, lipid profiles, thiobarbituric acid reactive substances (TBARs), AFU, TNF-α, total glutathione, molecular docking, histological and immunohistochemical markers for anti-transforming growth factor-ß1 (TGFß1), double-strand DNA damage (H2AX), regeneration (KI67) and apoptosis (Active caspase3) were done. Results and Discussion: Compared to T-2 toxin, curcumin and taurine treatment significantly ameliorated hepatoxicity as; hemoglobin, hematocrit and glutathione, hepatic glycogen, and KI-67 immune-reactive hepatocytes were significantly increased. Although, liver enzymes, inflammation, fibrosis, TGFß1 immunoexpressing and H2AX and active caspase 3 positive hepatocytes were significantly decreased. Noteworthy, curcumin's therapeutic effect was superior to taurine by histomorphometry parameters. Furthermore, molecular docking of the structural influence of curcumin and taurine on the DNA sequence showed curcumin's higher binding affinity than taurine. Conclusion: Both curcumin and taurine ameliorated T-2 induced hepatotoxicity as strong antioxidative agents with more effectiveness for curcumin.

2.
J Enzyme Inhib Med Chem ; 34(1): 1573-1589, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31852269

ABSTRACT

Pyridazine scaffolds are considered privileged structures pertaining to its novelty, chemical stability, and synthetic feasibility. In our quest towards the development of novel scaffolds for effective vascular endothelial growth 2 (VEGFR-2) inhibition with antiangiogenic activity, four novel series of pyridazines were designed and synthesised. Five of the synthesised compounds; namely (8c, 8f, 15, 18b, and 18c) exhibited potent VEGFR-2 inhibitory potency (>80%); with IC50 values ranging from low micromolar to nanomolar range; namely compounds 8c, 8f, 15, 18c with (1.8 µM, 1.3 µM, 1.4 µM, 107 nM), respectively. Moreover, 3-[4-{(6-oxo-1,6-dihydropyridazin-3-yl)oxy}phenyl]urea derivative (18b) exhibited nanomolar potency towards VEGFR-2 (60.7 nM). In cellular assay, the above compounds showed excellent inhibition of VEGF-stimulated proliferation of human umbilical vein endothelial cells at 10 µM concentration. Finally, an extensive molecular simulation study was performed to investigate the probable interaction with VEGFR-2.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Pyridazines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Density Functional Theory , Drug Screening Assays, Antitumor , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridazines/chemical synthesis , Pyridazines/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
J Enzyme Inhib Med Chem ; 34(1): 1347-1367, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31322015

ABSTRACT

In the designed compounds, either a biarylamide or biarylurea moiety or an N-substituted piperazine motif was linked to position 1 of the phthalazine core. The anti-proliferative activity of the synthesised compounds revealed that eight compounds (6b, 6e, 7b, 13a, 13c, 16a, 16d and 17a) exhibited excellent broad spectrum cytotoxic activity in NCI 5-log dose assays against the full 60 cell panel with GI50 values ranging from 0.15 to 8.41 µM. Moreover, the enzymatic assessment of the synthesised compounds against VEGFR-2 tyrosine kinase showed the significant inhibitory activities of the biarylureas (12b, 12c and 13c) with IC50s of 4.4, 2.7 and 2.5 µM, respectively, and with 79.83, 72.58 and 71.6% inhibition of HUVEC at 10 µM, respectively. Additionally, compounds (7b, 13c and 16a) were found to induce cell cycle arrest at S phase boundary. Compound 7b triggered a concurrent increase in cleaved caspase-3 expression level, indicating the apoptotic-induced cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Phthalazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phthalazines/chemical synthesis , Phthalazines/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Molecules ; 24(6)2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30934622

ABSTRACT

The quinoxaline scaffold is a promising platform for the discovery of active chemotherapeutic agents. Three series of quinoxaline derivatives were synthesized and biologically evaluated against three tumor cell lines (HCT116 human colon carcinoma, HepG2, liver hepatocellular carcinoma and MCF-7, human breast adenocarcinoma cell line), in addition to VEGFR-2 enzyme inhibition activity. Compounds VIId, VIIIa, VIIIc, VIIIe and XVa exhibited promising activity against the tested cell lines and weak activity against VEGFR-2. Compound VIIIc induced a significant disruption in the cell cycle profile and cell cycle arrest at the G2/M phase boundary. In further assays, the cytotoxic effect of the highly active compounds was determined using a normal Caucasian fibroblast-like fetal lung cell line (WI-38). Compound VIIIc could be considered as a lead compound that merits further optimization and development as an anti-cancer and an apoptotic inducing candidate against the HCT116 cell line.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Chemistry Techniques, Synthetic , Drug Design , Quinoxalines/chemistry , Quinoxalines/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Quinoxalines/chemical synthesis , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
5.
Cells ; 5(4)2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27763519

ABSTRACT

There is a paucity of information on the molecular biology of aging processes in the brain. We have used biomarkers of aging (SA ß-Gal, p16Ink4a, Sirt5, Sirt6, and Sirt7) to demonstrate the presence of an accelerated aging phenotype across different brain regions in the AS/AGU rat, a spontaneous Parkinsonian mutant of PKCγ derived from a parental AS strain. P16INK4a expression was significantly higher in AS/AGU animals compared to age-matched AS controls (p < 0.001) and displayed segmental expression across various brain regions. The age-related expression of sirtuins similarly showed differences between strains and between brain regions. Our data clearly show segmental aging processes within the rat brain, and that these are accelerated in the AS/AGU mutant. The accelerated aging, Parkinsonian phenotype, and disruption to dopamine signalling in the basal ganglia in AS/AGU rats, suggests that this rat strain represents a useful model for studies of development and progression of Parkinson's disease in the context of biological aging and may offer unique mechanistic insights into the biology of aging.

SELECTION OF CITATIONS
SEARCH DETAIL
...