Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Opt Express ; 28(12): 17630-17642, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32679968

ABSTRACT

A novel technique for realization of configurable/one-time programmable (OTP) silicon photonic circuits is presented. Once the proposed photonic circuit is programmed, its signal routing is retained without the need for additional power consumption. This technology can potentially enable a multi-purpose design of photonic chips for a range of different applications and performance requirements, as it can be programmed for each specific application after chip fabrication. Therefore, the production costs per chip can be reduced because of the increase in production volume, and rapid prototyping of new photonic circuits is enabled. Essential building blocks for the configurable circuits in the form of erasable directional couplers (DCs) were designed and fabricated, using ion implanted waveguides. We demonstrate permanent switching of optical signals between the drop port and through the port of the DCs using a localized post-fabrication laser annealing process. Proof-of-principle demonstrators in the form of generic 1×4 and 2×2 programmable switching circuits were fabricated and subsequently programmed.

2.
Opt Lett ; 44(20): 5081-5084, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31613269

ABSTRACT

We propose and experimentally demonstrate an apodized bidirectional grating coupler for high-efficiency, perfectly vertical coupling. Through grating apodization, the coupling efficiency (CE) can be notably improved, and the parasitic reflections can be minimized. For ease of fabrication, subwavelength gratings are introduced, which are also beneficial for the coupling performance. Simulation shows a record CE of 72%. We found that the coupler is quite robust to the variation of incidence mode field diameter and fiber misalignment. A CE of -1.8 dB is experimentally measured with a 1-dB bandwidth of 37 nm.

3.
ACS Sens ; 4(7): 1749-1753, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31264410

ABSTRACT

Protein sensing in biological fluids provides important information to diagnose many clinically relevant diseases. Mid-infrared (MIR) absorption spectroscopy of bovine serum albumin (BSA) is experimentally demonstrated on a germanium on silicon (GOS) waveguide in the 1900-1000 cm-1 (5.3-10.0 µm) region of the MIR. GOS waveguides were shown to guide light up to a wavelength of 12.9 µm. The waveguide absorption spectrum of water, showing molecular bending vibrations, was obtained experimentally and compared with a theoretical model showing good agreement. Measurement of a concentration series of BSA protein in phosphate buffered saline (PBS) from 0.1 mg/mL to 100 mg/mL was performed on the waveguide using filter paper as a flow strip, and the amide I, II, and III peaks were observed and quantified.


Subject(s)
Serum Albumin, Bovine/analysis , Animals , Cattle , Germanium/chemistry , Silicon/chemistry , Spectrophotometry, Infrared/methods
4.
Opt Express ; 27(11): 15735-15749, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163765

ABSTRACT

We present interlayer slope waveguides, designed to guide light from one level to another in a multi-layer silicon photonics platform. The waveguide is fabricated from hydrogenated amorphous silicon (a-Si:H) film, deposited using hot-wire chemical vapor deposition (HWCVD) at a temperature of 230°C. The interlayer slope waveguide is comprises of a lower level input waveguide and an upper level output waveguide, connected by a waveguide on a slope, with vertical separation to isolate other crossing waveguides. Measured loss of 0.17 dB/slope was obtained for waveguide dimensions of 600 nm waveguide width (w) and 400 nm core thickness (h) at a wavelength of 1550 nm and for transverse electric (TE) mode polarization.

5.
Opt Express ; 26(19): 24953-24963, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30469603

ABSTRACT

Fabrication errors pose significant challenges on silicon photonics, promoting post-fabrication trimming technologies to ensure device performance. Conventional approaches involve multiple trimming and characterization steps, impacting overall fabrication complexity. Here we demonstrate a highly accurate trimming method combining laser annealing of germanium implanted silicon waveguide and real-time monitoring of device performance. Direct feedback of the trimming process is facilitated by a differential spectroscopic technique based on photomodulation. The resonant wavelength trimming accuracy is better than 0.15 nm for ring resonators with 20-µm radius. We also realize operating point trimming of Mach-Zehnder interferometers with germanium implanted arms. A phase shift of 1.2π is achieved by annealing a 7-µm implanted segment.

6.
Sensors (Basel) ; 18(10)2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30261650

ABSTRACT

Hydrogel materials offer many advantages for chemical and biological sensoring due to their response to a small change in their environment with a related change in volume. Several designs have been outlined in the literature in the specific field of hydrogel-based optical sensors, reporting a large number of steps for their fabrication. In this work we present a three-dimensional, hydrogel-based sensor the structure of which is fabricated in a single step using thermal nanoimprint lithography. The sensor is based on a waveguide with a grating readout section. A specific hydrogel formulation, based on a combination of PEGDMA (Poly(Ethylene Glycol DiMethAcrylate)), NIPAAm (N-IsoPropylAcrylAmide), and AA (Acrylic Acid), was developed. This stimulus-responsive hydrogel is sensitive to pH and to water. Moreover, the hydrogel has been modified to be suitable for fabrication by thermal nanoimprint lithography. Once stimulated, the hydrogel-based sensor changes its topography, which is characterised physically by AFM and SEM, and optically using a specific optical set-up.

7.
Nat Commun ; 9(1): 2246, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29884878

ABSTRACT

Advanced photonic probing techniques are of great importance for the development of non-contact wafer-scale testing of photonic chips. Ultrafast photomodulation has been identified as a powerful new tool capable of remotely mapping photonic devices through a scanning perturbation. Here, we develop photomodulation maps into a quantitative technique through a general and rigorous method based on Lorentz reciprocity that allows the prediction of transmittance perturbation maps for arbitrary linear photonic systems with great accuracy and minimal computational cost. Excellent agreement is obtained between predicted and experimental maps of various optical multimode-interference devices, thereby allowing direct comparison of a device under test with a physical model of an ideal design structure. In addition to constituting a promising route for optical testing in photonics manufacturing, ultrafast perturbation mapping may be used for design optimization of photonic structures with reconfigurable functionalities.

8.
Opt Lett ; 43(6): 1251-1254, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29543264

ABSTRACT

We report the design and fabrication of a compact angled multimode interferometer (AMMI) on a 600 nm thick N-rich silicon nitride platform (n=1.92) optimized to match the International Telecommunication Union coarse wavelength division (de)multiplexing standard in the O telecommunication band. The demonstrated device exhibited a good spectral response with Δλ=20 nm, BW3 dB∼11 nm, IL<1.5 dB, and XT∼20 dB. Additionally, it showed a high tolerance to dimensional errors <120 pm/nm and low sensitivity to temperature variations <20 pm/°C, respectively. This device had a footprint of 0.02 mm×1.7 mm with the advantage of a simple design and a back-end-of-line compatible fabrication process that enables multilayer integration schemes due to its processing temperature <400°C.

9.
Nano Lett ; 18(1): 610-617, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29272140

ABSTRACT

Hybrid integration of nanoplasmonic devices with silicon photonic circuits holds promise for a range of applications in on-chip sensing, field-enhanced and nonlinear spectroscopy, and integrated nanophotonic switches. Here, we demonstrate a new regime of photon-plasmon coupling by combining a silicon photonic resonator with plasmonic nanoantennas. Using principles from coherent perfect absorption, we make use of standing-wave light fields to maximize the photon-plasmon interaction strength. Precise placement of the broadband antennas with respect to the narrowband photonic racetrack modes results in controlled hybridization of only a subset of these modes. By combining antennas into groups of radiating dipoles with opposite phase, far-field scattering is effectively suppressed. We achieve ultrafast tuning of photon-plasmon hybridization including reconfigurable routing of the standing-wave input between two output ports. Hybrid photonic-plasmonic resonators provide conceptually new approaches for on-chip integrated nanophotonic devices.

10.
Appl Opt ; 56(31): 8769-8776, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29091691

ABSTRACT

We present ring resonator (RR)-coupled Mach-Zehnder interferometers (MZIs) based on silicon-on-insulator rib waveguides, operating around the mid-IR wavelength of 3.8 µm. A number of different photonic integrated devices have been designed and fabricated experimentally to obtain the asymmetric Fano resonances in the mid-IR. We have investigated the influence of the coupling efficiency between the RR and the MZI as well as the phase shift between the two arms of the MZI on the Fano-type resonance spectral features, in agreement with theoretical predictions. Finally, wavelength-dependent Fano transmittances have been successfully measured with insertion losses up to ∼1 dB and extinction ratios of ∼20 dB. A slope of sharp Fano resonances as high as -574.6/µm has been achieved and estimated to be 35.5% higher than the slope of single RR Lorentzian-type resonances.

11.
Opt Express ; 25(22): 27310-27320, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092207

ABSTRACT

WDM components fabricated on the silicon-on-insulator platform have transmission characteristics that are sensitive to dimensional errors and temperature variations due to the high refractive index and thermo-optic coefficient of Si, respectively. We propose the use of NH3-free SiNx layers to fabricate athermal (de)multiplexers based on angled multimode interferometers (AMMI) in order to achieve good spectral responses with high tolerance to dimensional errors. With this approach we have shown that stoichiometric and N-rich SiNx layers can be used to fabricate AMMIs with cross-talk <30dB, insertion loss <2.5dB, sensitivity to dimensional errors <120pm/nm, and wavelength shift <10pm/°C.

12.
Opt Express ; 25(22): 27334-27340, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092209

ABSTRACT

Ultrahigh-Q Photonic Crystal cavities were realized in a suspended Silicon Rich Nitride (SiNx) platform for applications at telecom wavelengths. Using a line width modulated cavity design we achieved a simulated Q of 520,000 with a modal volume of 0.77(λ/n)3. The fabricated cavities were measured using the resonance scattering technique and we demonstrated a measured Q of 120,000. The experimental spectra at different input power also indicate that the non-linear losses are negligible in this material platform.

13.
Opt Express ; 25(22): 27431-27441, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092216

ABSTRACT

We report transmission measurements of germanium on silicon waveguides in the 7.5-8.5 µm wavelength range, with a minimum propagation loss of 2.5 dB/cm at 7.575 µm. However, we find an unexpected strongly increasing loss at higher wavelengths, potential causes of which we discuss in detail. We also demonstrate the first germanium on silicon multimode interferometers operating in this range, as well as grating couplers optimized for measurement using a long wavelength infrared camera. Finally, we use an implementation of the "cut-back" method for loss measurements that allows simultaneous transmission measurement through multiple waveguides of different lengths, and we use dicing in the ductile regime for fast and reproducible high quality optical waveguide end-facet preparation.

14.
Nat Commun ; 8(1): 1925, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29185445

ABSTRACT

Change History: A correction to this article has been published and is linked from the HTML version of this article.

15.
Opt Lett ; 42(18): 3566-3569, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28914903

ABSTRACT

A silicon nitride waveguide is a promising platform for integrated photonics, particularly due to its low propagation loss compared to other complementary metal-oxide-semiconductor compatible waveguides, including silicon-on-insulator. Input/output coupling in such thin optical waveguides is a key issue for practical implementations. Fiber-to-chip grating couplers in silicon nitride usually exhibit low coupling efficiency because the moderate index contrast leads to weak radiation strengths and poor directionality. Here, we present the first, to the best of our knowledge, experimental demonstration of a recently proposed apodized-imaging fiber-to-chip grating coupler in silicon nitride that images an in-plane waveguide mode to an optical fiber placed at a specific distance above the chip. By employing amplitude and phase apodization, the diffracted optical field of the grating is matched to the fiber mode. High grating directionality is achieved by using staircase grating teeth, which produce a blazing effect. Experimental results demonstrate an apodized-imaging grating coupler with a record coupling efficiency of -1.5 dB and a 3 dB bandwidth of 60 nm in the C-band.

16.
Nat Commun ; 8(1): 636, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28935924

ABSTRACT

Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.

17.
Opt Express ; 25(15): 17864-17871, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28789277

ABSTRACT

We present our recent work on fibre-chip grating couplers operating around 1310 nm. For the first time, we demonstrate the combination of dual-etch and apodization design approaches which may achieve a coupling efficiency of 85% (-0.7 dB). Subwavelength structures were employed to modify the coupling strength of the grating. -1.9 dB efficiency was measured from a first set of fabricated structures.

18.
Opt Express ; 25(4): 3214-3221, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28241537

ABSTRACT

We demonstrate design, fabrication, and characterization of two-dimensional photonic crystal (PhC) waveguides on a suspended silicon rich nitride (SRN) platform for applications at telecom wavelengths. Simulation results suggest that a 210 nm photonic band gap can be achieved in such PhC structures. We also developed a fabrication process to realize suspended PhC waveguides with a transmission bandwidth of 20 nm for a W1 PhC waveguide and over 70 nm for a W0.7 PhC waveguide. Using the Fabry-Pérot oscillations of the transmission spectrum we estimated a group index of over 110 for W1 PhC waveguides. For a W1 waveguide we estimated a propagation loss of 53 dB/cm for a group index of 37 and for a W0.7 waveguide the lowest propagation was 4.6 dB/cm.

19.
Sci Rep ; 7(1): 22, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28154419

ABSTRACT

Nonlinear silicon photonic devices have attracted considerable attention thanks to their ability to show large third-order nonlinear effects at moderate power levels allowing for all-optical signal processing functionalities in miniaturized components. Although significant efforts have been made and many nonlinear optical functions have already been demonstrated in this platform, the performance of nonlinear silicon photonic devices remains fundamentally limited at the telecom wavelength region due to the two photon absorption (TPA) and related effects. In this work, we propose an alternative CMOS-compatible platform, based on silicon-rich silicon nitride that can overcome this limitation. By carefully selecting the material deposition parameters, we show that both of the device linear and nonlinear properties can be tuned in order to exhibit the desired behaviour at the selected wavelength region. A rigorous and systematic fabrication and characterization campaign of different material compositions is presented, enabling us to demonstrate TPA-free CMOS-compatible waveguides with low linear loss (~1.5 dB/cm) and enhanced Kerr nonlinear response (Re{γ} = 16 Wm-1). Thanks to these properties, our nonlinear waveguides are able to produce a π nonlinear phase shift, paving the way for the development of practical devices for future optical communication applications.

20.
Opt Lett ; 41(18): 4324-7, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27628388

ABSTRACT

A broad transparency range of its constituent materials and compatibility with standard fabrication processes make germanium-on-silicon (Ge-on-Si) an excellent platform for the realization of mid-infrared photonic circuits. However, the comparatively large Ge waveguide thickness and its moderate refractive index contrast with the Si substrate hinder the implementation of efficient fiber-chip grating couplers. We report for the first time, to the best of our knowledge, a single-etch Ge-on-Si grating coupler with an inversely tapered access stage, operating at a 3.8 µm wavelength. Optimized grating excitation yields a coupling efficiency of -11 dB (7.9%), the highest value reported for a mid-infrared Ge-on-Si grating coupler, with reflectivity below -15 dB (3.2%). The large periodicity of our higher-order grating design substantially relaxes the fabrication constraints. We also demonstrate that a focusing geometry allows a 10-fold reduction in inverse taper length, from 500 to 50 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...