Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Monit Assess ; 195(11): 1340, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855951

ABSTRACT

Manchar Lake, Pakistan's biggest lake in the arid zone, faces human-induced salinity issues. This study investigated its effects on the multifaceted ecosystem services, including serving as a source of drinking and irrigation water and aquatic health through assessing fish diversity and characteristics. Analyses of 189 water samples from 21 sites revealed spatiotemporal variations in major ions contributing to lake water salinity. The study assessed water suitability for drinking and agriculture using the water quality index (WQI), sodium adsorption ratio (SAR), magnesium hazard (MH), sodium percent (Na%), and Kelly's ratio (KR). The WQI, ranging from 141 to 408, indicated that the lake water was unfit for drinking. In some seasons, such as the pre-monsoon period, the lake water was deemed unsuitable for irrigation due to high SAR values (18 ± 4 g/L, average ± standard deviation), consistently rising MH values exceeding 66 in all seasons and elevated sodium percentages surpassing 66% in both the pre-monsoon and monsoon seasons. The KR remained acceptable (averaging 0.8 to 2.5) in all seasons. Fish health in highly saline conditions was assessed using data from interviews, focus group discussions, and fish sampling (1684 fish from 10 sites). Results depicted that high salt contamination severely impacted fish length and weight. The study found low richness (Simpson's biodiversity: 0.697 and Shannon Weaver: 1.51) and evenness (Pielou's index: 0.48) among the fish populations. Since 1998, Manchar Lake has seen a decline in fish varieties from 32 to 23, with changes in fish species' feeding habits. To improve lake water quality, the study recommends diverting saline water to the sea before and after the monsoon season while utilizing freshwater from alternative sources to fill any water deficit.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Animals , Humans , Environmental Monitoring/methods , Lakes , Salinity , Pakistan , Water Quality , Sodium/analysis , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 338: 139587, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37479002

ABSTRACT

The wastewater containing urea-formaldehyde (UF) and melamine-formaldehyde (MF) from the medium-density fiberboard (MDF) lamination factory disposed into the waterbodies adversely affects human health and aquatic life. Therefore, its treatment before discharge is necessary. Researchers have used various techniques to treat this type of wastewater in the past, but none have tried electrochemical (EC). However, EC can potentially remove pollutants such as chemical oxygen demand (COD), total organic carbon (TOC), formaldehyde (FA), total nitrogen (TN), nitrogen nitrate (NO3-N), and other hydrocarbons. Hence, this study uses the EC technique to treat wastewater containing UF and MF with aluminium electrodes. The experiments were run in batch mode with a 250 mL working volume in a 500 mL Pyrex glass beaker using a variable DC power supply (0-30 V and 0-5 A). The impacts of various parameters, including reaction time (RT) 30-240 min, current density (CD) 8.66-51.94 mA/cm2, inter-electrode distance (IED) 1-2 cm, and mixing speed in the range of 60-120 rpm were examined to achieve the best pollutant removals. The best removal percentage was reached at the optimized conditions of 150 min RT, 43.28 mA/cm2 CD, 1.5 cm IED, and 80 rpm: 81.1% TOC, 61.5% COD, 76.7% TN, 28.3% NO3-N, and 55.2% FA. During the EC process, electrodes and energy consumption were estimated at around 2.367 (g/L) and 0.18 (kWh/L), respectively. A kinetic analysis was also carried out to determine the pollutant's removal trend. This study concluded that the pseudo-first-order kinetic model was the best fit for removing TOC and FA with regression coefficients of 0.96 and 0.83, respectively.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Humans , Wastewater , Waste Disposal, Fluid/methods , Kinetics , Urea , Industrial Waste/analysis , Electrodes , Environmental Pollutants/analysis , Water Pollutants, Chemical/analysis , Biological Oxygen Demand Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...