Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Food Res Int ; 177: 113855, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225130

ABSTRACT

Interaction of bovine ß-lactoglobulin (BLG) with several flavor compounds (FC) (2-methylpyrazine, vanillin, 2-acetylpyridine, 2- and 3-acetylthiophene, methyl isoamyl ketone, heptanone, octanone, and nonanone) was studied by high-sensitivity differential scanning calorimetry. The denaturation temperature, enthalpy, and heat capacity increment were determined at different FC concentrations. It was found that the denaturation temperature and heat capacity increment do not depend on the FC concentration, while the denaturation enthalpy decreases linearly with the FC concentration. These thermodynamic effects disclose the preferential FC binding to the unfolded form of BLG. By the obtained calorimetric data, the free energies of FC binding vs. the FC concentrations were calculated. These dependences were shown to be linear. Their slope relates closely to the overall FC affinity for the unfolded BLG in terms of the Langmuir binding model. The overall BLG affinity for FC varies from 20 M-1 (2-methylpyrazine) up to 360 M-1(nonanone). The maximal stoichiometry of the BLG-FC complexes was roughly estimated as a ratio of the length of the unfolded BLG to the molecular length of FC. Using these estimates, the apparent BLG-FC binding constants were determined. They are in the range of 0.3-8.0 M-1 and correlated strictly with the FC lipophilicity descriptor (logP).


Subject(s)
Hot Temperature , Lactoglobulins , Animals , Cattle , Lactoglobulins/chemistry , Calorimetry , Thermodynamics , Entropy , Ketones
2.
Int J Biol Macromol ; 250: 126265, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37567527

ABSTRACT

Energetics of chitosan (CS) polyplexes and conformational stability of bound DNA were studied at pH 5.0 by ITC and HS-DSC, respectively. The CS-DNA binding isotherm was well approximated by the McGhee-von Hippel model suggesting the binding mechanism to be a cooperative attachment of interacting CS ligands to the DNA matrix. Melting thermograms of polyplexes revealed the transformation of different conformational forms of bound DNA in dependence on the CS/DNA weight ratio rw. At 0

3.
ACS Omega ; 8(2): 1989-2000, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687083

ABSTRACT

We have designed a new medium bandgap non-fullerene small-molecule acceptor consisting of an IDT donor core flanked with 2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]-thiophene-4-ylidene) malononitrile (TC) acceptor terminal groups (IDT-TC) and compared its optical and electrochemical properties with the IDT-IC acceptor. IDT-TC showed an absorption profile from 300 to 760 nm, and it has an optical bandgap of 1.65 eV and HOMO and LUMO energy levels of -5.55 and -3.83 eV, respectively. In contrast to IDT-IC, IDT-TC has an upshifted LUMO energy level, which is advantageous for achieving high open-circuit voltage. Moreover, IDT-TC showed higher crystallinity and high electron mobility than IDT-IC. Using a wide bandgap D-A copolymer P as the donor, we compared the photovoltaic performance of IDT-TC, IDT-IC, and IDT-IC-Cl nonfullerene acceptors (NFAs). Polymer solar cells (PSCs) using P: IDT-TC, P: IDT-IC, and P:IDT-IC-Cl active layers achieved a power conversion efficiency (PCE) of 14.26, 11.56, and 13.34%, respectively. As the absorption profiles of IDT-IC-Cl and IDT-TC are complementary to each other, we have incorporated IDT-TC as the guest acceptor in the P: IDT-IC-Cl active layer to fabricate the ternary (P:IDT-TC: IDT-IC-Cl) PSC, demonstrating a PCE of 16.44%, which is significantly higher than that of the binary BHJ devices. The improvement in PCE for ternary PSCs is attributed to the efficient exploitation of excitons via energy transfer from IDT-TC to IDT-IC-Cl, suitable nanoscale phase separation, compact stacking distance, and more evenly distributed charge transport.

4.
Polymers (Basel) ; 14(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35746017

ABSTRACT

Antiseptic polymer gel-surfactant complexes were prepared by incorporating the low-molecular-weight cationic disinfectant cetylpyridinium chloride into the oppositely charged, slightly cross-linked polymer matrices. Three types of polymers were used: copolymers of acrylamide and sodium 2-acrylamido-2-methylpropane sulfonate; copolymers of acrylamide and sodium methacrylate; copolymers of vinylpyrrolidone and sodium methacrylate. It was shown that the rate of the release of the cationic disinfectant from the oppositely charged polymer gels could be tuned in a fairly broad range by varying the concentration of the disinfectant, the degree of swelling, and degree of cross-linking of the gel and the content/type of anionic repeat units in the polymer matrix. Polymer-surfactant complexes were demonstrated to reduce SARS-CoV-2 titer by seven orders of magnitude in as little as 5 s. The complexes retained strong virucidal activity against SARS-CoV-2 for at least one week.

5.
Int J Mol Sci ; 23(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35743090

ABSTRACT

The virucidal activity of a series of cationic surfactants differing in the length and number of hydrophobic tails (at the same hydrophilic head) and the structure of the hydrophilic head (at the same length of the hydrophobic n-alkyl tail) was compared. It was shown that an increase in the length and number of hydrophobic tails, as well as the presence of a benzene ring in the surfactant molecule, enhance the virucidal activity of the surfactant against SARS-CoV-2. This may be due to the more pronounced ability of such surfactants to penetrate and destroy the phospholipid membrane of the virus. Among the cationic surfactants studied, didodecyldimethylammonium bromide was shown to be the most efficient as a disinfectant, its 50% effective concentration (EC50) being equal to 0.016 mM. Two surfactants (didodecyldimethylammonium bromide and benzalkonium chloride) can deactivate SARS-CoV-2 in as little as 5 s.


Subject(s)
COVID-19 Drug Treatment , Disinfectants , Disinfectants/chemistry , Disinfectants/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , SARS-CoV-2 , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
6.
Macromol Rapid Commun ; 43(9): e2200060, 2022 May.
Article in English | MEDLINE | ID: mdl-35218257

ABSTRACT

Two D-A copolymers consisting of fused ring pyrrolo-dithieno-quinoxaline acceptors are synthesized with different donor units, i.e., benzodithiophene (BDT) with alkylthienyl (P134) and 2-ethylhexyloxy (P117) side chains. These copolymers are used as donors and a narrow bandgap acceptor Y6 to fabricate bulk heterojunction polymer solar cell devices. Owing to the strong electron-deficient fused ring pyrrolo-bithieno-quinoxaline and weak alkyl thienyl side chains in BDT, the polymer solar cells (PSCs) based on P134:Y6 attain the power conversion efficiency (PCE) of 15.42%, which is higher than the P117:Y6 counterpart (12.14%). The superior value of PCE for P134:Y6 can be associated with more well-adjusted charge transport, weak charge recombination, proficient exciton generation, and dissociation into free charge carriers and their subsequent charge collection owing to the dense π-π stacking distance and more considerable crystal coherence length for the P134:Y6 thin films. This investigation confirms the great potential of a strong acceptor-weak donor tactic for developing efficient D-A copolymers consists of quinoxaline acceptor for PSCs.

7.
Macromol Rapid Commun ; 43(7): e2100839, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35040533

ABSTRACT

A new acceptor unit anthra[1,2-b: 4,3-b': 6,7-c'']trithiophene-8,12-dione (А3Т) (A2) is synthesized and used to design D-A1 -D-A2 medium bandgap donor copolymers with same thiophene (D) and A2 units but different A1, i.e., fluorinated benzothiadiazole (F-BTz) and benzothiadiazole (BTz) denoted as P130 and P131, respectively. Their detailed optical and electrochemical properties are examined. The copolymers show good solubility in common organic solvents, broad absorption in the visible spectral region from 300 to 700 nm, and deeper HOMO levels of -5.45 and -5.34 eV for P130 and P131, respectively. Finally, an optimized polymer solar cell (PSC) based on P131 as the donor and narrow bandgap non-fullerene small molecule acceptor Y6 demonstrated a power conversion efficiency (PCE) of >11.13%. To further improve the efficiency of the non-fullerene PSC, the P130 is optimized by introducing a fluorine atom into the BTz unit, F-BTz acceptor unit, and PCE PSC based on P130: Y6 active layer increased to >15.28%, which is higher than that for the non-fluorinated analog P131:Y6. The increase in the PCE for former PSC is attributed to the more crystalline nature and compact π-π stacking distance, leading to more balanced charge transport and reduced charge recombination. These remarkable results demonstrate that A3T-based copolymer P130 with F-BTz as the second acceptor is a promising donor material for high-performance PSCs.

8.
Beilstein J Nanotechnol ; 11: 1230-1241, 2020.
Article in English | MEDLINE | ID: mdl-32874823

ABSTRACT

The synthesis of magnetite (Fe3O4) nanorods using reverse co-precipitation of Fe3+ and Fe2+ ions in the presence of a static magnetic field is reported in this work. The phase composition and crystal structure of the synthesized material were investigated using electron diffraction, Raman spectroscopy, and transmission electron microscopy. It was shown that the morphology of the reaction product strongly depends on the amount of OH- ions in the reaction mixture, varying from Fe3O4 nanorods to spherical Fe3O4 nanoparticles. Fe3O4 nanorods were examined using high-resolution transmission electron microscopy proving that they are single-crystalline and do not have any preferred crystallographic orientation along the axis of the rods. According to the data obtained a growth mechanism was proposed for the rods that consists of the dipole-dipole interaction between their building blocks (small hexagonal faceted magnetite nanocrystals), which are formed during the first step of the reaction. The study suggests a facile, green and controllable method for synthesizing anisotropic magnetic nanoparticles in the absence of stabilizers, which is important for further modification of their surfaces and/or incorporation of the nanoparticles into different media.

9.
Int J Biol Macromol ; 164: 1451-1460, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32731002

ABSTRACT

Oligochitosan, a low molecular weight derivative of the cationic biopolymer, chitosan, currently shows a great potential of application as a biodegradable non-toxic stimuli-sensitive drug carrier. This paper aimed to elucidate the thermoresponsive potential of oligochitosan and the temperature-controlled drug binding and release to shed light on oligochitosan potential in stimuli-responsive drug delivery. Mechanisms of thermoresponsive behavior of oligochitosan induced by ß-glycerophosphate (GP) were investigated using ITC, DSC, and DLS. Upon heating, the aqueous oligochitosan solution underwent a cooperative transition of the microphase separation type resulting in the formation of stable nano-sized particles. Energetics of the GP-oligochitosan interaction (evaluated by ITC) revealed a positive enthalpy of the GP binding to oligochitosan, which pointed to a notable contribution of dehydration and the related rearrangement of the polysaccharide hydration shell. Energetics of the thermal phase transition of oligochitosan was investigated by DSC upon variation of the solvent dielectric constant and GP concentration. The dependences of the transition parameters on these variables were determined and used for the analysis of the oligochitosan thermoresponsivity mechanism. The binding of ibuprofen to the thermotropic oligochitosan nanogel particles and its release from them were evaluated under near-physiological conditions. Relevantly, the oligochitosan nanoparticles surpassed some reference macromolecular adsorbers by the affinity for the drug and by the delayed release kinetics.


Subject(s)
Chitin/analogs & derivatives , Drug Carriers/chemistry , Glycerophosphates/chemistry , Ibuprofen/chemistry , Nanogels/chemistry , Calorimetry , Calorimetry, Differential Scanning , Chitin/chemistry , Chitosan , Drug Liberation , Glycerol/chemistry , Hot Temperature , Humans , Light , Molecular Weight , Nanoparticles/chemistry , Oligosaccharides , Particle Size , Phase Transition , Polymers/chemistry , Protein Binding , Scattering, Radiation , Serum Albumin, Human/chemistry
10.
Langmuir ; 35(51): 16915-16924, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31763846

ABSTRACT

Changes in the affinity of the swollen and collapsed forms of a thermoresponsive polymer gel for targeted ligands can be directly estimated using a thermodynamic approach based on high-sensitivity differential scanning calorimetry (HS-DSC). For macromolecular ligands (proteins) bound to the gel, this method provides information on changes in their conformational stability, which is of crucial importance for the biological or pharmaceutical activity of the protein. We used HS-DSC for the study of interactions of two widely administrated drugs-gemfibrozil and ibuprofen-and two globular proteins-α-lactalbumin and BSA-with hydrogels of the cross-linked poly(methoxyethylaminophosphazene). The gel collapse resulted in a substantial increase in the gel affinity for the drugs. We obtained quantitative estimations of the affinity of the collapsed gels depending on the gel structure, pH, concentration of NaCl, and phosphate buffer (an inductor of the thermoresponsivity). The gels retained a high affinity for the drugs in the near-physiological conditions (ionic composition and pH). The binding curves of globular proteins to the gels in the swollen and collapsed states were obtained. The different proteins demonstrated the preferential binding to the swollen or collapsed state of the gels, presumably depending on the protein surface hydrophobicity. The proteins bound to the gel subchains retain their native tertiary structure and, therefore, maintain their functionality when immobilized in the polyphosphazene hydrogels.

11.
Langmuir ; 34(47): 14378-14387, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30392359

ABSTRACT

We investigated energetics of binding of multifunctional pyranine ligands to hydrogels of the cross-linked poly(methoxyethylaminophosphazene) (PMOEAP) from data on the thermotropic volume phase transition of the gels by means of high-sensitivity differential scanning calorimetry. Dependences of the transition temperature, enthalpy, and width on the concentration of pyranines were obtained, and the excess transition free energy as a function of the pyranine concentration was calculated. We found that the affinity of the gels for the pyranine ligands increased very significantly upon the gel collapse. The intrinsic binding constants and free energies of binding of the ligands to the gels in the collapsed state were estimated from the DSC data. They revealed a significant increase in the hydrogel affinity for pyranines proportional to the number of anionic groups in the ligand structure. The affinity of the PMOEAP hydrogels for the multifunctional ligands was not affected by an increase in the cross-linking density of the gels and only slightly reduced by physiological salt concentrations.

13.
Beilstein J Nanotechnol ; 9: 870-879, 2018.
Article in English | MEDLINE | ID: mdl-29600148

ABSTRACT

Two sequential transformations of the orientational structure in nematic liquid crystal droplets containing a dendrimer additive (nanosized macromolecules with light-absorbing azobenzene terminal moieties) under light irradiation in the UV-blue spectral range were investigated. The origin of these transitions is in the change of the boundary conditions due to photoisomerization of the dendrimer adsorbed onto the liquid crystal-glycerol interface. It was shown that the photoisomerization processes of dendrimer molecules in a liquid crystal are accompanied by a spatial rearrangement of their azobenzene moieties, which is the key point in the explanation of the observed effects.

14.
J Phys Chem B ; 122(6): 1981-1991, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29357259

ABSTRACT

Biodegradable hydrogels of cross-linked polymethoxyethylaminophosphazenes (PMOEAPs) of various cross-linking density and apparent subchain hydrophobicity were investigated by high-sensitivity differential scanning calorimetry and equilibrium swelling measurements. The volume phase transition of the hydrogels was found to be induced by salts of weak polybasic acids. The transition parameters were determined depending on the pH, phosphate concentration, cross-linking density, and apparent hydrophobicity of the gels. The transition enthalpy increased three times and reached 60 J g-1 at the phosphate concentrations 5-100 mM. The transition temperature decreased by 60 °C when the pH changed from 6 to 8. A decrease in the transition temperature (by ∼20 °C) was achieved due to incorporation of 9.4 mol % of some alkyl groups into the gel subchains. The classic theory of the collapse of polymer gels coupled with the data of protein science on hydration energetics for various molecular surfaces reproduces correctly thermodynamics of the collapse of PMOEAP hydrogels.

15.
J Biomed Mater Res B Appl Biomater ; 106(1): 270-277, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28130848

ABSTRACT

In this article, we study the stability of chitosan coatings applied on glutaraldehyde-stabilized bovine pericardium when exposed to biodegradation in vivo in the course of model subcutaneous tests on rats. The coatings were deposited from carbonic acid solutions, that is, H2 O saturated with CO2 at high pressure. Histological sections of treated pericardium samples demonstrated that the structure of pericardial connective tissues was not significantly altered by the coating application method. It was revealed that the dynamics of biodegradation depended on the total mass of chitosan applied as well as on the DDA of chitosan used. As long as the amount of chitosan did not exceed a certain threshold limit, no detectable degradation occurred within the time of the tests (12 weeks for the rat model). For higher chitosan amounts, we detected a ∼20% reduction of the mass after the in vivo exposition. The presumed mechanism of such behavior is discussed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 270-277, 2018.


Subject(s)
Chitosan , Coated Materials, Biocompatible , Collagen , Materials Testing , Animals , Cattle , Chitosan/chemistry , Chitosan/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Collagen/chemistry , Collagen/pharmacology , Rats
16.
J Phys Chem B ; 121(33): 7878-7888, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28737387

ABSTRACT

The influence of inorganic salt on the structure of lecithin/bile salt mixtures in aqueous solution is studied by means of dissipative particle dynamics simulations. We propose a coarse-grained model of phosphatidylcholine and two types of bile salts (sodium cholate and sodium deoxycholate) and also take into account the presence of low molecular weight salt. This model allows us to study the system on rather large time and length scales (up to about ∼20 µs and 50 nm) and to reveal mechanisms of experimentally observed increasing viscosity upon increasing the low molecular weight salt concentration in this system. We show that increasing the low molecular weight salt concentration induces the growth of cylinder-like micelles formed in lecithin/bile salt mixtures in water. These wormlike micelles can entangle into transient networks displaying perceptible viscoelastic properties. Computer simulation results are in good qualitative agreement with experimental observations.

17.
J Chem Phys ; 146(21): 211104, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28595414

ABSTRACT

Reversible orientational transitions in the droplets of a nematic liquid crystal (NLC) caused by the change of boundary conditions under the low intensity diode illumination are investigated. Photosensitivity of NLC is achieved by the addition of the dendrimer compound with azobenzene terminal groups. Two types of NLC droplets in glycerol are considered: the spherical droplets in the bulk of glycerol and the droplets laid-down onto the solid substrate. In the second case, the first order phase transition is revealed. The effects described can be useful for the development of highly sensitive chemical detectors and microsized photo-tunable optical devices.

18.
ACS Appl Mater Interfaces ; 8(48): 32998-33009, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27934138

ABSTRACT

Two novel regular terpolymers that are of D-A1-D-A2 type and contain benzothiadiazole and 2,5-dibromo-8-dodecanoylbenzo[1,2-b:3,4-b':5,6-d″]trithiophene (P1) or 2,8-dibromo-5-dodecanoylbenzene[1,2-b:3,4-b':5,6-d″]trithiophene (P2) acceptor units with the same thiophene donor were synthesized through Stille coupling, and their optical and electrochemical properties were investigated. The highest occupied molecular orbital (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels of these terpolymers indicate that there is sufficient LUMO offset with PCBM for efficient exciton dissociation, and their deeper HOMO levels ensure the high open-circuit voltage for the resultant bulk heterojunction solar cells. Measurements on the solar cell devices also confirm that compared to those based on P2 the devices based on P1 possess a higher short-circuit photocurrent (Jsc) as well as a higher fill factor (FF), which is attributed to the lower bandgap and higher hole mobility for P1, whereas the Voc is higher for the devices that are based on P2, which may be a result of P2 having a lower HOMO energy level than P1. The optimized polymer solar cells fabricated using P1:PC71BM (DIO/CF) and P2:PC71BM (CF/DIO) for the active layers showed a PCE of 7.19% and 6.34%, respectively. Atomic force microscopy (AFM) images of P1:PC71BM blend films show that they exhibit more suitable morphology with favorable interpenetrating networks, which favors high Jsc and FF. Moreover, P1 exhibits a more crystalline nature than P2 that also favors the charge transport. This may be a result of better molecular packing, more distinct phase separation of the blended films, as well as a reduction of charge recombination.

19.
Langmuir ; 32(46): 12166-12174, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27802053

ABSTRACT

The interactions between ions and phospholipids are closely associated with the structures and functions of cell membrane. Instead of conventional aqueous systems, we systematically investigated the effects of inorganic ions on the self-assembly of lecithin, a zwitterionic phosphatidylcholine, in cyclohexane. Previous studies have shown that addition of inorganic salts with specific divalent and trivalent cations can transform lecithin organosols into organogels. In this study, we focused on the effect of monovalent alkali halides. Fourier transform infrared spectroscopy was used to demonstrate that the binding strength of the alkali cations with the phosphate of lecithin is in the order Li+ > Na+ > K+. More importantly, the cation-phosphate interaction is affected by the paired halide anions, and the effect follows the series I- > Br- > Cl-. The salts of stronger interactions with lecithin, including LiCl, LiBr, LiI, and NaI, were found to induce cylindrical micelles sufficiently long to form organogels, while others remain organosols. A mechanism based on the charge density of ions and the enthalpy change of the ion exchange between alkali halides and lecithin headgroup is provided to explain the contrasting interactions and the effectiveness of the salts to induce organogelation.

20.
J Chem Phys ; 145(4): 044904, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27475394

ABSTRACT

Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a single direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.

SELECTION OF CITATIONS
SEARCH DETAIL
...