Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 55(6): 2161-6, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26754786

ABSTRACT

Water-containing organic solutions are widespread reaction media in organic synthesis and catalysis. This type of multicomponent liquid system has a number of unique properties because of the tendency for water to self-organize in mixtures with other liquids. The characterization of these water domains is a challenging task because of their soft and dynamic nature. In the present study, the morphology and dynamics of micrometer- and nanometer-scale water-containing compartments in ionic liquids were directly observed by electron microscopy. A variety of morphologies, including isolated droplets, dense structures, aggregates, and 2D meshworks, have been experimentally detected and studied. Using the developed method, the impact of water on the acid-catalyzed biomass conversion reaction was studied at the microscopic level. The process that produced nanostructured domains in solution led to better yields and higher selectivities compared with reactions involving the bulk system.

2.
ChemistryOpen ; 2(5-6): 208-14, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24551568

ABSTRACT

An easy and convenient procedure is described for monitoring chemical reactions and characterization of compounds dissolved in ionic liquids using the well-known tandem mass spectrometry (MS/MS) technique. Generation of wastes was avoided by utilizing an easy procedure for analysis of ionic liquid systems without preliminary isolation and purification. The described procedure also decreased the risk of plausible contamination and damage of the ESI-MS hardware and increased sensitivity and accuracy of the measurements. ESI-MS detection in MS/MS mode was shown to be efficient in ionic liquids systems for structural and mechanistic studies, which are rather difficult otherwise. The developed ESI-MS/MS approach was applied to study samples corresponding to peptide systems in ionic liquids and to platform chemical directed biomass conversion in ionic liquids.

3.
ChemSusChem ; 5(4): 783-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22359390

ABSTRACT

The mechanistic nature of the conversion of carbohydrates to the sustainable platform chemical 5-hydroxymethylfurfural (5-HMF) was revealed at the molecular level. A detailed study of the key sugar units involved in the biomass conversion process has shown that the simple dissolution of fructose in the ionic liquid 1-butyl-3-methylimidazolium chloride significantly changes the anomeric composition and favors the formation of the open fructoketose form. A special NMR approach was developed for the determination of molecular structures and monitoring of chemical reactions directly in ionic liquids. The transformation of glucose to 5-HMF has been followed in situ through the detection of intermediate species. A new environmentally benign, easily available, metal-free promoter with a dual functionality (B(2)O(3)) was developed for carbohydrate conversion to 5-HMF.


Subject(s)
Boron Compounds/chemistry , Carbohydrates/chemistry , Furaldehyde/analogs & derivatives , Green Chemistry Technology/methods , Ionic Liquids/chemistry , Catalysis , Furaldehyde/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...