Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Sci Pollut Res Int ; 23(16): 16738-60, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27184149

ABSTRACT

Measurements of major ions, trace elements, water-stable isotopes, and geophysical soundings were made to examine the interaction between Urmia Aquifer (UA) and Urmia Lake (UL), northwest Iran. The poor correlation between sampling depth and Cl(-) concentrations indicated that the position of freshwater-saltwater interface is not uniformly distributed in the study area, and this was attributed to aquifer heterogeneities. The targeted coastal wells showed B/Cl and Br/Cl molar ratios in the range of 0.0022-2.43 and 0.00032-0.28, respectively. The base-exchange index (BEI) and saturation index (SI) calculations showed that the salinization process followed by cation-exchange reactions mainly controls changes in the chemical composition of groundwater. All groundwater samples are depleted with respect to δ(18)O (-11.71 to -9.4 ‰) and δD (-66.26 to -48.41 ‰). The δ(18)O and δD isotope ratios for surface and groundwater had a similar range and showed high deuterium excess (d-excess) (21.11 to 31.16 ‰). The high d-excess in water samples is because of incoming vapors from the UL mixed with an evaporated moisture flux from the Urmia mainland and incoming vapors from the west (i.e., Mediterranean Sea). Some saline samples with low B/Cl and Br/Cl ratios had depleted δ(18)O and δD. In this case, due to freshwater flushing, the drilled wells in the coastal playas and salty sediments could have more depleted isotopes, more Cl(-), and consequently smaller B/Cl and Br/Cl ratios. Moreover, the results of hydrochemical facies evolution (HFE) diagram showed that because of the existence fine-grained sediments saturated with high density saltwater in the coastal areas that act as a natural barrier, increasing the groundwater exploitation leads to movement of freshwaters from recharge zones in the western mountains not saltwater from UL. The highly permeable sediments at the junction of the rivers to the lake are characterized by low hydraulic gradient and high hydraulic conductivity. These properties enhance the salinization of groundwater observed in the study area. The main factors influencing the salinity are base-exchange reactions, invasion of highly diluted saltwater, dissolution of salty pans, and water chemistry evolution along flow paths.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Lakes/chemistry , Salinity , Water Pollutants/analysis , Iran , Isotopes , Mediterranean Sea , Rivers , Water Resources
3.
Environ Monit Assess ; 188(4): 233, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27000318

ABSTRACT

This paper presents the results of an assessment about interaction between Urmia Lake (UL) and coastal groundwater in the Urmia aquifer (UA). This aquifer is the most significant contributor to the freshwater supply of the coastal areas. The use of hydrochemical facies can be very useful to identify the saltwater encroachment or freshening phases in the coastal aquifers. In this study, the analysis of salinization/freshening processes was carried out through the saturation index (SI), ionic deltas (Δ), binary diagrams, and hydrochemical facies evolution (HFE) diagram. Based on the Gibbs plot, the behavior of the major ions showed that the changes in the chemical composition of the groundwater are mainly controlled by the water-soil/rock interaction zone and few samples are relatively controlled by evaporation. A possible explanation for this phenomenon is that the deposited chloride and sulfate particles can form the minor salinity source in some coastal areas when washed down by precipitation. The SI calculations showed that all groundwater samples, collected in these periods, show negative saturation indices, which indicate undersaturation with respect to anhydrite, gypsum, and halite. In addition, except in a few cases, all other samples showed the undersaturation with respect to the carbonate minerals such as aragonite, calcite, and dolomite. Therefore, these minerals are susceptible to dissolution. In the dry season, the SI calculations showed more positive values with respect to dolomite, especially in the northern part of UA, which indicated a higher potential for precipitation and deposition of dolomite. The percentage of saltwater in the groundwater samples of Urmia plain was very low, ranging between 0.001 and 0.79 % in the wet season and 0.0004 and 0.81 % in the dry season. The results of HFE diagram, which was taken to find whether the aquifer was in the saltwater encroachment phase or in the freshening phase, indicated that except for a few wells near the coast, there is very little hydraulic interaction between UA and UL. In this coastal area, most of the samples that were collected repeatedly in both wet and dry seasons showed the same hydrochemical facies, which suggested that the seasonal groundwater fluctuations cannot significantly change the chemical composition of groundwater.


Subject(s)
Groundwater/chemistry , Salinity , Water Pollutants/analysis , Chlorides/analysis , Environmental Monitoring/methods , Iran , Sulfates/analysis , Water Supply/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...