Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39091799

ABSTRACT

Designing binders to target undruggable proteins presents a formidable challenge in drug discovery, requiring innovative approaches to overcome the lack of putative binding sites. Recently, generative models have been trained to design binding proteins via three-dimensional structures of target proteins, but as a result, struggle to design binders to disordered or conformationally unstable targets. In this work, we provide a generalizable algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model, and subsequently screen these novel linear sequences for target-selective interaction activity via a CLIP-based contrastive learning architecture. By integrating these generative and discriminative steps, we create a Pep tide Pr ioritization via CLIP ( PepPrCLIP ) pipeline and validate highly-ranked, target-specific peptides experimentally, both as inhibitory peptides and as fusions to E3 ubiquitin ligase domains, demonstrating functionally potent binding and degradation of conformationally diverse protein targets in vitro . Overall, our design strategy provides a modular toolkit for designing short binding linear peptides to any target protein without the reliance on stable and ordered tertiary structure, enabling generation of programmable modulators to undruggable and disordered proteins such as transcription factors and fusion oncoproteins.

2.
bioRxiv ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38895377

ABSTRACT

Fusion oncoproteins, a class of chimeric proteins arising from chromosomal translocations, drive and sustain various cancers, particularly those impacting children. Unfortunately, due to their intrinsically disordered nature, large size, and lack of well-defined, druggable pockets, they have been historically challenging to target therapeutically: neither small molecule-based methods nor structure-based approaches for binder design are strong options for this class of molecules. Recently, protein language models (pLMs) have demonstrated success at representing protein sequences with information-rich embeddings, enabling downstream design applications from sequence alone. However, no current pLM has been trained on fusion oncoprotein sequences and thus may not produce optimal representations for these proteins. In this work, we introduce FusOn-pLM, a novel pLM that fine-tunes the state-of-the-art ESM-2 model on fusion oncoprotein sequences. We specifically introduce a novel masked language modeling (MLM) strategy, employing a binding-site probability predictor to focus masking on key amino acid residues, thereby generating more optimal fusion oncoprotein-aware embeddings. Our model improves performance on both fusion oncoprotein-specific benchmarks and disorder prediction tasks in comparison to baseline ESM-2 representations, as well as manually-constructed biophysical embeddings, motivating downstream usage of FusOn-pLM embeddings for therapeutic design tasks targeting these fusions. We have made our model publicly available to the community at https://huggingface.co/ChatterjeeLab/FusOn-pLM.

SELECTION OF CITATIONS
SEARCH DETAIL
...