Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Protoc ; 18(6): 1814-1840, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37188806

ABSTRACT

Antibodies play an important role in the immune system by binding to molecules called antigens at their respective epitopes. These interfaces or epitopes are structural entities determined by the interactions between an antibody and an antigen, making them ideal systems to analyze by using docking programs. Since the advent of high-throughput antibody sequencing, the ability to perform epitope mapping using only the sequence of the antibody has become a high priority. ClusPro, a leading protein-protein docking server, together with its template-based modeling version, ClusPro-TBM, have been re-purposed to map epitopes for specific antibody-antigen interactions by using the Antibody Epitope Mapping server (AbEMap). ClusPro-AbEMap offers three different modes for users depending on the information available on the antibody as follows: (i) X-ray structure, (ii) computational/predicted model of the structure or (iii) only the amino acid sequence. The AbEMap server presents a likelihood score for each antigen residue of being part of the epitope. We provide detailed information on the server's capabilities for the three options and discuss how to obtain the best results. In light of the recent introduction of AlphaFold2 (AF2), we also show how one of the modes allows users to use their AF2-generated antibody models as input. The protocol describes the relative advantages of the server compared to other epitope-mapping tools, its limitations and potential areas of improvement. The server may take 45-90 min depending on the size of the proteins.


Subject(s)
Furylfuramide , Proteins , Epitopes , Proteins/chemistry , Antigens , Antibodies , Epitope Mapping
2.
Proteins ; 91(2): 171-182, 2023 02.
Article in English | MEDLINE | ID: mdl-36088633

ABSTRACT

Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template-based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template-based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x-ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER-Map, has been tested on a widely used antibody-antigen docking benchmark. The results show that PIPER-Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.


Subject(s)
Antibodies , Antigens , Epitopes/metabolism , Antibodies/chemistry , Antigens/chemistry , Molecular Dynamics Simulation , Proteins/chemistry , Protein Binding
3.
J Mol Biol ; 432(11): 3404-3410, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31863748

ABSTRACT

The template-based approach has been essential for achieving high-quality models in the recent rounds of blind protein-protein docking competition CAPRI (Critical Assessment of Predicted Interactions). However, few such automated methods exist for protein-small molecule docking. In this paper, we present an algorithm for template-based docking of small molecules. It searches for known complexes with ligands that have partial coverage of the target ligand, performs conformational sampling and template-guided energy refinement to produce a variety of possible poses, and then scores the refined poses. The algorithm is available as the automated ClusPro LigTBM server. It allows the user to specify the target protein as a PDB file and the ligand as a SMILES string. The server then searches for templates and uses them for docking, presenting the user with top-scoring poses and their confidence scores. The method is tested on the Astex Diverse benchmark, as well as on the targets from the last round of the D3R (Drug Design Data Resource) Grand Challenge. The server is publicly available as part of the ClusPro docking server suite at https://ligtbm.cluspro.org/.


Subject(s)
Computational Biology , Databases, Protein , Proteins/ultrastructure , Small Molecule Libraries/chemistry , Molecular Docking Simulation , Protein Conformation , Proteins/genetics , Software , Structural Homology, Protein
4.
J Comput Aided Mol Des ; 33(1): 119-127, 2019 01.
Article in English | MEDLINE | ID: mdl-30421350

ABSTRACT

Manifold representations of rotational/translational motion and conformational space of a ligand were previously shown to be effective for local energy optimization. In this paper we report the development of the Monte-Carlo energy minimization approach (MCM), which uses the same manifold representation. The approach was integrated into the docking pipeline developed for the current round of D3R experiment, and according to D3R assessment produced high accuracy poses for Cathepsin S ligands. Additionally, we have shown that (MD) refinement further improves docking quality. The code of the Monte-Carlo minimization is freely available at https://bitbucket.org/abc-group/mcm-demo .


Subject(s)
Cathepsins/antagonists & inhibitors , Molecular Docking Simulation/methods , Monte Carlo Method , Binding Sites , Computer-Aided Design , Crystallography, X-Ray , Databases, Protein , Drug Design , Ligands , Molecular Conformation , Molecular Dynamics Simulation , Protein Binding , Thermodynamics
5.
Proc Natl Acad Sci U S A ; 113(30): E4286-93, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27412858

ABSTRACT

Energy evaluation using fast Fourier transforms (FFTs) enables sampling billions of putative complex structures and hence revolutionized rigid protein-protein docking. However, in current methods, efficient acceleration is achieved only in either the translational or the rotational subspace. Developing an efficient and accurate docking method that expands FFT-based sampling to five rotational coordinates is an extensively studied but still unsolved problem. The algorithm presented here retains the accuracy of earlier methods but yields at least 10-fold speedup. The improvement is due to two innovations. First, the search space is treated as the product manifold [Formula: see text], where [Formula: see text] is the rotation group representing the space of the rotating ligand, and [Formula: see text] is the space spanned by the two Euler angles that define the orientation of the vector from the center of the fixed receptor toward the center of the ligand. This representation enables the use of efficient FFT methods developed for [Formula: see text] Second, we select the centers of highly populated clusters of docked structures, rather than the lowest energy conformations, as predictions of the complex, and hence there is no need for very high accuracy in energy evaluation. Therefore, it is sufficient to use a limited number of spherical basis functions in the Fourier space, which increases the efficiency of sampling while retaining the accuracy of docking results. A major advantage of the method is that, in contrast to classical approaches, increasing the number of correlation function terms is computationally inexpensive, which enables using complex energy functions for scoring.


Subject(s)
Algorithms , Fourier Analysis , Molecular Docking Simulation/methods , Protein Conformation , Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Protein Binding , Proteins/metabolism , Reproducibility of Results , Rotation , Thermodynamics
6.
J Comput Chem ; 37(17): 1537-51, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27015749

ABSTRACT

Hydrodynamic interactions (HI) are incorporated into Langevin dynamics of the Cα -based protein model using the Truncated Expansion approximation (TEA) to the Rotne-Prager-Yamakawa diffusion tensor. Computational performance of the obtained GPU realization demonstrates the model's capability for describing protein systems of varying complexity (10(2) -10(5) residues), including biological particles (filaments, virus shells). Comparison of numerical accuracy of the TEA versus exact description of HI reveals similar results for the kinetics and thermodynamics of protein unfolding. The HI speed up and couple biomolecular transitions through cross-communication among protein domains, which result in more collective displacements of structure elements governed by more deterministic (less variable) dynamics. The force-extension/deformation spectra from nanomanipulations in silico exhibit sharper force signals that match well the experimental profiles. Hence, biomolecular simulations without HI overestimate the role of tension/stress fluctuations. Our findings establish the importance of incorporating implicit water-mediated many-body effects into theoretical modeling of dynamic processes involving biomolecules. © 2016 Wiley Periodicals, Inc.


Subject(s)
Hydrodynamics , Models, Molecular , Proteins/chemistry , Solvents/chemistry , Algorithms , Computer Simulation , Protein Folding , Protein Structural Elements , Software , Thermodynamics
7.
PLoS Comput Biol ; 12(1): e1004729, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26821264

ABSTRACT

The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.


Subject(s)
Biomechanical Phenomena/physiology , Capsid Proteins/ultrastructure , Nonlinear Dynamics , Virion/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/physiology , Computational Biology , Molecular Dynamics Simulation , Protein Conformation , Virion/chemistry , Virion/physiology
8.
J Am Chem Soc ; 136(49): 17036-45, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25389565

ABSTRACT

Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral noncovalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physicochemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force-deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9 ± 0.4 kcal/mol) and longitudinal (14.9 ± 1.5 kcal/mol) tubulin-tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000-26,000 pN·nm(2)) support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblies.


Subject(s)
Microtubules/chemistry , Nanostructures/chemistry , Thermodynamics , Tubulin/chemistry , Models, Molecular , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...