Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 3655, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24718053

ABSTRACT

Many efficient light-emitting devices and photodetectors are based on semiconductors with, respectively, a direct or indirect bandgap configuration. The less known pseudodirect bandgap configuration can be found in wurtzite (WZ) semiconductors: here electron and hole wave-functions overlap strongly but optical transitions between these states are impaired by symmetry. Switching between bandgap configurations would enable novel photonic applications but large anisotropic strain is normally needed to induce such band structure transitions. Here we show that the luminescence of WZ GaAs nanowires can be switched on and off, by inducing a reversible direct-to-pseudodirect band structure transition, under the influence of a small uniaxial stress. For the first time, we clarify the band structure of WZ GaAs, providing a conclusive picture of the energy and symmetry of the electronic states. We envisage a new generation of devices that can simultaneously serve as efficient light emitters and photodetectors by leveraging the strain degree of freedom.

2.
Phys Rev Lett ; 107(25): 255502, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22243090

ABSTRACT

Large-scale classical and quantum simulations are used to generate a-Si:H structures. The bond-resolved density of the occupied electron states discloses the nature of microscopic defects responsible for levels in the gap. Highly strained bonds give rise to band tails and midgap states. The latter originate mainly from stretched bonds, in addition to dangling bonds, and can act as hole traps. This study provides strong evidence for photoinduced degradation (Staebler-Wronski effect) driven by strain, thus supporting recent work on a-Si, and sheds light on the role of hydrogen.

3.
Phys Rev Lett ; 101(2): 026803, 2008 Jul 11.
Article in English | MEDLINE | ID: mdl-18764212

ABSTRACT

Making devices with graphene necessarily involves making contacts with metals. We use density functional theory to study how graphene is doped by adsorption on metal substrates and find that weak bonding on Al, Ag, Cu, Au, and Pt, while preserving its unique electronic structure, can still shift the Fermi level with respect to the conical point by approximately 0.5 eV. At equilibrium separations, the crossover from p-type to n-type doping occurs for a metal work function of approximately 5.4 eV, a value much larger than the graphene work function of 4.5 eV. The numerical results for the Fermi level shift in graphene are described very well by a simple analytical model which characterizes the metal solely in terms of its work function, greatly extending their applicability.

4.
Phys Rev Lett ; 99(17): 176602, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17995355

ABSTRACT

Based upon the observations (i) that their in-plane lattice constants match almost perfectly and (ii) that their electronic structures overlap in reciprocal space for one spin direction only, we predict perfect spin filtering for interfaces between graphite and (111) fcc or (0001) hcp Ni or Co. The spin filtering is quite insensitive to roughness and disorder. The formation of a chemical bond between graphite and the open d-shell transition metals that might complicate or even prevent spin injection into a single graphene sheet can be simply prevented by dusting Ni or Co with one or a few monolayers of Cu while still preserving the ideal spin-injection property.

SELECTION OF CITATIONS
SEARCH DETAIL
...