Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res Bull ; 184: 13-23, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35272006

ABSTRACT

Alzheimer's disease (AD) is a progressive neurological disease that slowly causing memory impairments with no effective treatment. We have recently reported that kisspeptin-13 (KP-13) ameliorates Aß toxicity-induced memory deficit in rats. Here, the possible cellular impact of kisspeptin receptor activation in a rat model of the early stage AD was assessed using whole-cell patch-clamp recording from CA1 pyramidal neurons and molecular approaches. Compared to neurons from the control group, cells from the Aß-treated group displayed spontaneous and evoked hyperexcitability with lower spike frequency adaptation. These cells had also a lower sag ratio in response to hyperpolarizing prepulse current delivered before a depolarizing current injection. Neurons from the Aß-treated group exhibited short spike onset latency, lower rheobase and short utilization time compared with those in the control group. Furthermore, phase plot analysis of action potential showed that Aß treatment affected the action potential features. These electrophysiological changes induced by Aß were associated with increased expression of stromal interaction molecules (STIMs), particularly (STIM2) and decreased pCREB/CREB ratio. Treatment with KP-13 following Aß injection into the entorhinal cortex, however, prevented the excitatory effect of Aß on spontaneous and evoked neuronal activity, increased the latency of onset, enhanced the sag ratio, increased the rheobase and utilization time, and prevented the changes induced Aß on spike parameters. In addition, the KP-13 application after Aß treatment reduced the expression of STIMs and increased the pCREB/CREB ratio compared to those receiving Aß treatment alone. In summary, these results provide evidence that activation of kisspeptin receptor may be effective against pathology of Aß.


Subject(s)
Alzheimer Disease , Stromal Interaction Molecules , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Hippocampus/metabolism , Kisspeptins/adverse effects , Kisspeptins/metabolism , Memory Disorders/chemically induced , Peptide Fragments/toxicity , Pyramidal Cells , Rats , Rats, Wistar , Stromal Interaction Molecules/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...