Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 19(2): 697-705, 2020 02.
Article in English | MEDLINE | ID: mdl-31658961

ABSTRACT

After mastectomy, breast reconstruction is increasingly performed using autologous tissue with the aim of improving quality of life. During this procedure, autologous tissue is excised, relocated, and reattached using microvascular anastomoses at the site of the extirpated breast. The period during which the tissue is ex vivo may allow genetic modification without any systemic exposure to the vector. Could such access permit delivery of therapeutic agents using the tissue flap as a vehicle? Such delivery may be more targeted and oncologically efficient than systemic therapy, and avoid systemic complications. The cytokine IFNγ has antitumor effects, and systemic toxicity could be circumvented by localized delivery of the IFNγ gene via gene therapy to autologous tissue used for breast reconstruction, which then releases IFNγ and exerts antitumor effects. In a rat model of loco-regional recurrence (LRR) with MADB-106-Luc and MAD-MB-231-Luc breast cancer cells, autologous tissue was transduced ex vivo with an adeno-associated viral vector encoding IFNγ. The "Therapeutic Reconstruction" released IFNγ at the LRR site and eliminated cancer cells, significantly decreased tumor burden, and increased survival compared with sham reconstruction (P <0.05). Mechanistically, localized IFNγ immunotherapy stimulated M1 macrophages to target cancer cells within the regional confines of the modified tumor environment. This concept of "Therapeutic Breast Reconstruction" using ex vivo gene therapy of autologous tissue offers a new application for immunotherapy in breast cancer with a dual therapeutic effect of both reconstructing the ablative defect and delivering local adjuvant immunotherapy.


Subject(s)
Breast Neoplasms/surgery , Genetic Therapy/methods , Immunotherapy/methods , Interferon-gamma/immunology , Mammaplasty/methods , Peptide Fragments/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Rats , Rats, Inbred F344
2.
Stem Cells ; 37(2): 240-246, 2019 02.
Article in English | MEDLINE | ID: mdl-30412645

ABSTRACT

Although bone marrow-derived mesenchymal stem cells (BM-MSCs) are widely recognized as promising therapeutic agents, the age-related impacts on cellular function remain largely uncharacterized. In this study, we found that BM-MSCs from young donors healed wounds in a xenograft model faster compared with their aged counterparts (p < .001). Given this significant healing advantage, we then used single-cell transcriptomic analysis to provide potential molecular insights into these observations. We found that the young cells contained a higher proportion of cells characterized by a higher expression of genes involved in tissue regeneration. In addition, we identified a unique, quiescent subpopulation that was exclusively present in young donor cells. Together, these findings may explain a novel mechanism for the enhanced healing capacity of young stem cells and may have implications for autologous cell therapy in the extremes of age. Stem Cells 2019;37:240-246.


Subject(s)
Mesenchymal Stem Cells/metabolism , Transcriptome/genetics , Adult , Aged , Aging , Animals , Cell Differentiation , Cell Proliferation , Cellular Senescence , Humans , Mice , Young Adult
3.
Plast Reconstr Surg ; 139(3): 695e-706e, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28234841

ABSTRACT

BACKGROUND: A hallmark of diabetes mellitus is the breakdown of almost every reparative process in the human body, leading to critical impairments of wound healing. Stabilization and activity of the transcription factor hypoxia-inducible factor (HIF)-1α is impaired in diabetes, leading to deficits in new blood vessel formation in response to injury. In this article, the authors compare the effectiveness of two promising small-molecule therapeutics, the hydroxylase inhibitor dimethyloxalylglycine and the iron chelator deferoxamine, for attenuating diabetes-associated deficits in cutaneous wound healing by enhancing HIF-1α activation. METHODS: HIF-1α stabilization, phosphorylation, and transactivation were measured in murine fibroblasts cultured under normoxic or hypoxic and low-glucose or high-glucose conditions following treatment with deferoxamine or dimethyloxalylglycine. In addition, diabetic wound healing and neovascularization were evaluated in db/db mice treated with topical solutions of either deferoxamine or dimethyloxalylglycine, and the efficacy of these molecules was also compared in aged mice. RESULTS: The authors show that deferoxamine stabilizes HIF-1α expression and improves HIF-1α transactivity in hypoxic and hyperglycemic states in vitro, whereas the effects of dimethyloxalylglycine are significantly blunted under hyperglycemic hypoxic conditions. In vivo, both dimethyloxalylglycine and deferoxamine enhance wound healing and vascularity in aged mice, but only deferoxamine universally augmented wound healing and neovascularization in the setting of both advanced age and diabetes. CONCLUSION: This first direct comparison of deferoxamine and dimethyloxalylglycine in the treatment of impaired wound healing suggests significant therapeutic potential for topical deferoxamine treatment in ischemic and diabetic disease.


Subject(s)
Amino Acids, Dicarboxylic/pharmacology , Deferoxamine/pharmacology , Iron Chelating Agents/pharmacology , Mixed Function Oxygenases/antagonists & inhibitors , Wound Healing/drug effects , Age Factors , Animals , Diabetes Mellitus/physiopathology , Hyperglycemia/physiopathology , Mice
4.
Stem Cells Transl Med ; 5(2): 248-57, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26702129

ABSTRACT

Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency, diverse cytokine profile, and ease of harvest via liposuction. Alternative approaches to classical suction-assisted liposuction are gaining popularity; however, little evidence exists regarding the impact of different liposuction methods on the regenerative functionality of ASCs. Human ASC characteristics and regenerative capacity were assessed when harvested via ultrasound-assisted (UAL) versus standard suction-assisted liposuction. ASCs obtained via UAL were of equal quality when directly compared with the current gold standard harvest method. UAL is an adjunctive source of fully functional mesenchymal stem cells for applications in basic research and clinical therapy.


Subject(s)
Abdominal Fat/surgery , Adipocytes/cytology , Elective Surgical Procedures/instrumentation , Lipectomy/instrumentation , Mesenchymal Stem Cells/cytology , Abdominal Fat/cytology , Abdominal Fat/diagnostic imaging , Abdominal Fat/metabolism , Adipocytes/metabolism , Adult , Animals , Antigens, CD/metabolism , Biomarkers/metabolism , Cell Differentiation , Cell Survival , Chondrocytes/cytology , Chondrocytes/metabolism , Elective Surgical Procedures/methods , Female , Flow Cytometry , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Lipectomy/methods , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Nude , Middle Aged , Neovascularization, Physiologic , Osteoblasts/cytology , Osteoblasts/metabolism , Ultrasonography , Wound Healing/physiology
5.
Stem Cell Reports ; 4(3): 445-58, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25733018

ABSTRACT

Mechanisms underlying age-related defects within lymphoid-lineages remain poorly understood. We previously reported that sex steroid ablation (SSA) induced lymphoid rejuvenation and enhanced recovery from hematopoietic stem cell (HSC) transplantation (HSCT). We herein show that, mechanistically, SSA induces hematopoietic and lymphoid recovery by functionally enhancing both HSC self-renewal and propensity for lymphoid differentiation through intrinsic molecular changes. Our transcriptome analysis revealed further hematopoietic support through rejuvenation of the bone marrow (BM) microenvironment, with upregulation of key hematopoietic factors and master regulatory factors associated with aging such as Foxo1. These studies provide important cellular and molecular insights into understanding how SSA-induced regeneration of the hematopoietic compartment can underpin recovery of the immune system following damaging cytoablative treatments. These findings support a short-term strategy for clinical use of SSA to enhance the production of lymphoid cells and HSC engraftment, leading to improved outcomes in adult patients undergoing HSCT and immune depletion in general.


Subject(s)
Cell Differentiation , Gonadal Steroid Hormones/antagonists & inhibitors , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Lymphopoiesis/physiology , Regeneration , Animals , Cell Count , Cell Differentiation/genetics , Cell Movement , Cell Self Renewal , Gene Expression Profiling , Gene Expression Regulation, Developmental , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Male , Mice , Mice, Knockout , Models, Animal , Regeneration/genetics , Stem Cell Niche
6.
J Immunol ; 191(12): 5914-24, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24249728

ABSTRACT

Multipotent mesenchymal stromal cells (MSCs) possess reparative and immunoregulatory properties, making them attractive candidates for cellular therapy. However, the majority of MSCs administered i.v. encounter a pulmonary impasse and soon disappear from the lungs, raising the question of how they induce such durable immunosuppressive effects. Using a mouse model of allergic asthma, we show that administration of MSCs isolated from human bone marrow, umbilical cord, or adipose tissue provoked a pronounced increase in alveolar macrophages and inhibited hallmark features of asthma, including airway hyperresponsiveness, eosinophilic accumulation, and Th2 cytokine production. Importantly, selective depletion of this macrophage compartment reversed the therapeutic benefit of MSC treatment on airway hyperresponsiveness. Our data demonstrate that human MSCs exert cross-species immunosuppressive activity, which is mediated by alveolar macrophages in allergic asthma. As alveolar macrophages are the predominant immune effector cells at the air-tissue interface in the lungs, this study provides a compelling mechanism for durable MSC effects in the absence of sustained engraftment.


Subject(s)
Asthma/therapy , Immunosuppression Therapy/methods , Macrophages, Alveolar/physiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Adipose Tissue/cytology , Animals , Asthma/etiology , Asthma/immunology , Asthma/pathology , Asthma/physiopathology , Bone Marrow Cells/cytology , Bronchial Hyperreactivity/chemically induced , Bronchial Hyperreactivity/etiology , Bronchoalveolar Lavage Fluid , Clodronic Acid/pharmacology , Eosinophilia/etiology , Eosinophilia/immunology , Female , Genes, Reporter , Graft Survival , Heterografts , Humans , Immunization , Interleukin-10/biosynthesis , Interleukin-10/genetics , Lung/pathology , Lymphokines/biosynthesis , Lymphokines/genetics , Macrophages, Alveolar/drug effects , Methacholine Chloride , Mice , Mice, Inbred BALB C , Organ Specificity , Ovalbumin/immunology , Ovalbumin/toxicity , Species Specificity , Specific Pathogen-Free Organisms , Th2 Cells/metabolism , Transduction, Genetic , Umbilical Cord/cytology
7.
PLoS One ; 7(7): e39487, 2012.
Article in English | MEDLINE | ID: mdl-22829869

ABSTRACT

BACKGROUND: Cardiovascular disorders associated with endothelial dysfunction, such as atherosclerosis, have decreased nitric oxide (NO) bioavailability. Arginase in the vasculature can compete with eNOS for L-arginine and has been implicated in atherosclerosis. The aim of this study was to evaluate the effect of endothelial-specific elevation of arginase II expression on endothelial function and the development of atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic mice on a C57BL/6 background with endothelial-specific overexpression of human arginase II (hArgII) gene under the control of the Tie2 promoter were produced. The hArgII mice had elevated tissue arginase activity except in liver and in resident peritoneal macrophages, confirming endothelial specificity of the transgene. Using small-vessel myography, aorta from these mice exhibited endothelial dysfunction when compared to their non-transgenic littermate controls. The blood pressure of the hArgII mice was 17% higher than their littermate controls and, when crossed with apoE -/- mice, hArgII mice had increased aortic atherosclerotic lesions. CONCLUSION: We conclude that overexpression of arginase II in the endothelium is detrimental to the cardiovascular system.


Subject(s)
Arginase/metabolism , Atherosclerosis/enzymology , Atherosclerosis/pathology , Endothelium, Vascular/enzymology , Hypertension/enzymology , Animals , Arginase/genetics , Atherosclerosis/genetics , Blood Pressure/physiology , Blotting, Western , Endothelium, Vascular/pathology , Hypertension/genetics , Hypertension/pathology , Macrophages, Peritoneal , Mice , Mice, Inbred C57BL , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction
8.
Hypertension ; 54(2): 294-301, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19546381

ABSTRACT

Arginase upregulation is associated with aging and cardiovascular diseases. In this study we report on the cardiovascular phenotype of the arginase II knockout (KO) mouse. We demonstrate that vascular sensitivity and reactivity altered over time in these animals such that no influence on responses to vasoconstrictor activity was observed in 7-week-old KO mice, but dampened responses to norepinephrine and phenylephrine were observed by 10 and 15 weeks with Rho kinase influencing these effects in the 15-week-old animals. Despite these dampened vasoconstrictory responses, KO mice demonstrated increased mean arterial pressure from 8 weeks old. This hypertensive phenotype was associated with an increase in left ventricular weight, left ventricular systolic pressure, and diminished diastolic function. KO mice also show enhanced plasma norepinephrine turnover, suggesting an increased sympathetic outflow. In conclusion, our data suggest that global loss of arginase II activity results in hypertension. We suggest that this strain of mouse warrants further investigation as a potentially novel model of hypertension.


Subject(s)
Arginase/metabolism , Arginine/pharmacology , Hypertension/genetics , Hypertension/physiopathology , Nitric Oxide/metabolism , Analysis of Variance , Animals , Arginase/pharmacology , Baroreflex , Blood Flow Velocity , Blood Pressure Determination , Catecholamines/blood , Catecholamines/metabolism , Disease Models, Animal , Female , Heart Function Tests , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Probability , Random Allocation , Sensitivity and Specificity , Urea/metabolism , Vascular Resistance/genetics , Vascular Resistance/physiology , Vasoconstriction/genetics , Vasoconstriction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...