Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 19(1): 1000, 2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31651282

ABSTRACT

BACKGROUNDS: Overexpression of epidermal growth factor receptor (EGFR) has been established as a valid therapeutic target of non-small cell lung cancer (NSCLC). However, the clinical benefit of cetuximab as an EGFR-targeting drug is still controversial, partially due to the lack of effective means to identify suitable patients. This study aimed to investigate the potential of radiolabeled cetuximab as a non-invasive tool to predict cetuximab accumulation in NSCLC tumor xenografts with varying EGFR expression levels. METHODS: The NSCLC tumors in model mice were subjected to in vivo biodistribution study and positron emission tomography (PET) imaging 48 h after injection of either 111In- or 64Cu-labeled cetuximab. The EGFR expression levels of NSCLC tumors were determined by ex vivo immunoblotting. RESULTS: We found that tumors with high EGFR expression had significantly higher [111In]In-DOTA-cetuximab accumulation than tumors with moderate to low EGFR expression (P < 0.05). Strong correlations were found between [111In]In-DOTA-cetuximab tumor uptake and EGFR expression level (r = 0.893), and between [64Cu]Cu-DOTA-cetuximab tumor uptake with EGFR expression level (r = 0.915). PET imaging with [64Cu]Cu-DOTA-cetuximab allowed clear visualization of tumors. CONCLUSION: Our findings suggest that this immuno-PET imaging can be clinically translated as a tool to predict cetuximab accumulation in NSCLC cancer patients prior to cetuximab therapy.


Subject(s)
Antineoplastic Agents, Immunological/metabolism , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Cetuximab/metabolism , Cetuximab/therapeutic use , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Positron-Emission Tomography/methods , Animals , Antineoplastic Agents, Immunological/chemistry , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cetuximab/chemistry , Copper Radioisotopes/chemistry , Copper Radioisotopes/metabolism , ErbB Receptors/metabolism , Female , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Tissue Distribution , Xenograft Model Antitumor Assays
2.
Article in English | MEDLINE | ID: mdl-27617003

ABSTRACT

Gadolinium (Gd)-based contrast agents (GBCAs) are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs) are critical for the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs). We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and TH-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA) and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA) GBCAs were accumulated without inducing cell death in CV-1 cells. By contrast, Gd chloride (GdCl3) treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10(-8) to 10(-6)M) augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10(-5) to 10(-4)M), with decreased ß-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in ß-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10(-9)M T4 was augmented by low-dose Gd-DTPA-BMA (10(-7)M) but was suppressed by higher dose (10(-5)M). Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10(-9)M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10(-5)M) as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization was much weaker than that of the other compounds. These results indicate that exposure to specific GBCAs may, at least in part, cause toxic effects in the brain by disrupting the action of THs on TRs. The toxic effects of GBCAs may depend on the chemical structure of GBCA and the dose. Thus, it is very important to choose appropriate GBCAs for imaging to prevent adverse side effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...