Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 102(37): 13046-51, 2005 Sep 13.
Article in English | MEDLINE | ID: mdl-16135570

ABSTRACT

Pyrimethamine (Pyr) targets dihydrofolate reductase of Plasmodium vivax (PvDHFR) as well as other malarial parasites, but its use as antimalarial is hampered by the widespread high resistance. Comparison of the crystal structures of PvDHFR from wild-type and the Pyr-resistant (SP21, Ser-58 --> Arg + Ser-117 --> Asn) strain as complexes with NADPH and Pyr or its analog lacking p-Cl (Pyr20) clearly shows that the steric conflict arising from the side chain of Asn-117 in the mutant enzyme, accompanied by the loss of binding to Ser-120, is mainly responsible for the reduction in binding of Pyr. Pyr20 still effectively inhibits both the wild-type and SP21 proteins, and the x-ray structures of these complexes show how Pyr20 fits into both active sites without steric strain. These structural insights suggest a general approach for developing new generations of antimalarial DHFR inhibitors that, by only occupying substrate space of the active site, would retain binding affinity with the mutant enzymes.


Subject(s)
Drug Resistance/genetics , Plasmodium vivax/enzymology , Pyrimethamine/chemistry , Tetrahydrofolate Dehydrogenase/chemistry , Amino Acid Substitution , Animals , Antimalarials/chemistry , Antimalarials/metabolism , Binding Sites , Crystallography, X-Ray , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/metabolism , Molecular Structure , Protein Binding , Pyrimethamine/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...