Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Food Microbiol ; 191: 24-31, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25217722

ABSTRACT

This study evaluated the acid and heat resistance of Salmonella Enteritidis in simulated gastric fluid (pH 2.0) and during thermal treatment (54-60 °C), respectively, after adaptation to lactic acid (LA) or trisodium phosphate (TSP) at various pHs (pH 5.3-9.0). The changes in membrane lipid composition and expression levels of RpoS and RpoH were examined to elucidate their roles in bacterial stress resistance. Transcriptional profile of several virulence-related genes was also analyzed. Results showed that LA-adapted cells at pH 5.3 and 6.3 had higher acid and heat resistance than control cells and cells adapted to TSP at pH 8.3 and 9.0. LA-adapted cells had the lowest ratio of unsaturated to saturated fatty acids, indicating that they might possess a less fluid membrane. It was observed that the expression levels of RpoH and RpoS were upregulated in TSP-adapted cells but not in LA-adapted cells. Thus, these results indicate that the increased acid and heat resistance of LA-adapted S. Enteritidis was possibly due to the decreased membrane fluidity instead of the upregulation of RpoS and RpoH. About 6.0, 2.1, and 2.46-fold upregulation of spvR, avrA, and hilA were observed in cells adapted to TSP at pH 9.0, except sefA that had its highest expression level in the control cells, indicating that the expression of these virulence genes highly depends on environmental conditions. This is the first study to show that the alteration in the cytoplasmic membrane rather than RpoS and RpoH plays a more crucial role in conferring greater acid and heat resistance on LA-adapted S. Enteritidis, thus providing a better understanding on the bacterial stress response to acidic conditions.


Subject(s)
Gene Expression Regulation, Bacterial , Hot Temperature , Membrane Lipids/chemistry , Salmonella enteritidis/physiology , Virulence/genetics , Adaptation, Physiological/genetics , Fatty Acids/analysis , Gene Expression Profiling , Hydrogen-Ion Concentration , Lactic Acid/pharmacology , Membrane Fluidity/genetics , Phosphates/pharmacology , Salmonella enteritidis/drug effects , Salmonella enteritidis/genetics , Salmonella enteritidis/growth & development , Stress, Physiological/genetics
2.
Compr Rev Food Sci Food Saf ; 13(2): 172-189, 2014 Mar.
Article in English | MEDLINE | ID: mdl-33412645

ABSTRACT

The occurrence of Listeria monocytogenes in ready-to-eat (RTE) fish products is well documented and represents an important food safety concern. Contamination of this pathogen in vacuum-packed (VP) smoked fish products at levels greater than the RTE food limit (100 CFU/g) has been traced to factors such as poor sanitary practices, contaminated processing environments, and temperature abuse during prolonged storage in retail outlets. Intervention technologies including physical, biological, and chemical techniques have been studied to control transmission of L. monocytogenes to these products. High-pressure processing, irradiation, and pulsed UV-light treatment have shown promising results. Potential antilisterial effects of some sanitizers and combined chemical preservatives have also been demonstrated. Moreover, the concept of biopreservation, use of bioactive packaging, and a combination of different intervention technologies, as in the hurdle concept, are also under consideration. In this review, the prevalence, routes of contamination, and potential intervention technologies to control transmission of L. monocytogenes in VP smoked fish products are discussed.

3.
Int J Food Microbiol ; 172: 102-9, 2014 Feb 17.
Article in English | MEDLINE | ID: mdl-24368153

ABSTRACT

The influence of growth temperature (10, 25, 37, and 42 °C) on the survival of Salmonella Enteritidis in simulated gastric fluid (SGF; pH=2.0) and during heat treatment (54, 56, 58, and 60 °C), on the membrane fatty acid composition, as well as on stress-/virulence-related gene expression was studied. Cells incubated at temperatures lower or higher than 37 °C did not increase their acid resistance, with the maximum D-value of 3.07 min in cells grown at 37 °C; while those incubated at higher temperature increased their heat resistance, with the maximum D60 °C-values of 1.4 min in cells grown at 42 °C. A decrease in the ratio of unsaturated to saturated fatty acids was observed as the growth temperature increased. Compared to the control cells grown at 37 °C, the expression of rpoS was 16.5- and 14.4-fold higher in cells cultivated at 10 and 25 °C, respectively; while the expression of rpoH was 2.9-fold higher in those cultivated at 42 °C. The increased expression of stress response gene rpoH and the decreased ratio of unsaturated to saturated fatty acids correlated with the greater heat resistance of bacteria grown at 42 °C; while the decreased expression of stress response gene rpoS at 42 °C might contribute to the decrease in acid resistance. Virulence related genes-spvR, hilA, avrA-were induced in cells cultivated at 42 °C, except sefA which was induced in the control cells. This study indicates that environmental temperature may affect the virulence potential of S. Enteritidis, thus temperature should be well controlled during food storage.


Subject(s)
Gene Expression Regulation, Bacterial , Salmonella enteritidis/genetics , Stress, Physiological/genetics , Temperature , Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Heat-Shock Proteins/genetics , Hydrogen-Ion Concentration , Membrane Lipids/chemistry , Salmonella enteritidis/chemistry , Salmonella enteritidis/drug effects , Salmonella enteritidis/metabolism , Salmonella enteritidis/pathogenicity , Sigma Factor/genetics , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...