Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adipocyte ; 10(1): 124-130, 2021 12.
Article in English | MEDLINE | ID: mdl-33595419

ABSTRACT

Fatty acid desaturase 1 (FADS1) polymorphisms alter fatty acid content in subcutaneous adipose tissue (SAT); however, existing evidence is limited and conflicting regarding the association between FADS1 variants and SAT inflammatory status. To advance this area, we conducted an exploratory study to investigate whether the common rs174537 polymorphism in FADS1 was associated with immune cell profiles in abdominal and femoral SAT in individuals with obesity. FADS1 gene expression and immune cell profiles in SAT depots were assessed by qPCR and flow cytometry, respectively. Although FADS1 gene expression was associated with genotype, no associations were observed with immune cell profiles in either depot. Our study provides additional evidence that rs174537 in FADS1 has minimal impact on inflammatory status in obese SAT.


Subject(s)
Adipose Tissue/immunology , Fatty Acid Desaturases/genetics , Subcutaneous Fat/metabolism , Adipose Tissue/metabolism , Adult , Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases/immunology , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Female , Femur/metabolism , Genotype , Humans , Intra-Abdominal Fat/immunology , Male , Middle Aged , Obesity/metabolism , Pilot Projects , Polymorphism, Single Nucleotide/genetics , Subcutaneous Fat/immunology
2.
Obesity (Silver Spring) ; 28(12): 2310-2314, 2020 12.
Article in English | MEDLINE | ID: mdl-33179451

ABSTRACT

OBJECTIVE: The inflammatory environment in lower-body subcutaneous adipose tissue (SAT) has been largely unexplored. This study aimed to examine the effects of region (upper body vs. lower body) and sex on SAT immune cell profiles in young adults with obesity. METHODS: Abdominal (AB) and femoral (FEM) SAT was collected from 12 males (mean [SEM] age = 30.8 [1.4] years; mean [SEM] BMI = 34.1 [1.1] kg/m2 ) and 22 females (mean [SEM] age = 30.6 [0.6] years; mean [SEM] BMI = 34.0 [0.7] kg/m2 ) with obesity via needle aspiration. Flow cytometry was used to quantify macrophage (CD68+) and T-cell (CD3+) subpopulations in the stromovascular fraction of each SAT region. RESULTS: Females had a greater proportion of most T-cell types (CD3+CD4+CD45RA+, CD3+CD4+CD45RA-, and CD3+CD8+CD45RA+) in FEM compared with AB SAT, while males had similar proportions in both regions. Regardless of sex, the M1-like macrophage population (CD68+CD206-) was proportionally higher in AB SAT than in FEM SAT. CONCLUSIONS: Results showed that T-cell populations vary by SAT region in females but not males. Both sexes, however, have proportionately more proinflammatory macrophages in upper-body than in lower-body SAT. It remains to be seen how these unique immune cell profiles in males and females with obesity contribute to adipose tissue inflammation and metabolic disease risk.


Subject(s)
Macrophages/metabolism , Obesity/metabolism , Subcutaneous Fat/metabolism , T-Lymphocytes/metabolism , Adult , Female , Gene Expression , Humans , Male , Sex Factors
3.
Endocrinology ; 161(11)2020 11 01.
Article in English | MEDLINE | ID: mdl-32808657

ABSTRACT

Although childhood-onset obesity (CO) and adulthood-onset obesity (AO) are known to lead to distinctive clinical manifestations and disease risks, the fundamental differences between them are largely unclear. The aim of the current study is to investigate the fundamental differences between subcutaneous adipose tissue from CO and AO and to identify metabolic differences between abdominal (abSAT) and femoral subcutaneous adipose tissues (feSAT). Total and regional body composition was assessed using dual-energy x-ray absorptiometry (DXA) and computed tomography. Levels of acetyl-CoA, NAD+/NADH, acetyl-CoA network genes, mitochondrial complex abundance, H3 acetylation were determined in biopsied abSAT and feSAT. Serum leptin and adiponectin were measured. Our results showed that acetyl-CoA was higher in subcutaneous adipose tissue from subjects with AO compared with CO. Multiple linear regression revealed that ATP citrate lyase was the only main effect affecting the level of acetyl-CoA. Circulating leptin concentrations was higher in AO. The increased level of acetyl-CoA was strongly associated with histone H3 acetylation, LEP expression in adipose tissue, and circulating leptin in AO. NAD+/NADH was higher in CO; however, abundance of mitochondrial complexes, the complex II:complex V ratio, and the complex IV:complex V ratio were lower in CO, reflecting compromised mitochondrial function in subcutaneous adipose tissue from CO. Moreover, we identified differences in the level of acetyl-CoA and NAD+/NADH ratio between abSAT and feSAT, suggesting that these fat depots may possess different metabolic properties. The fundamental difference in the important metabolic intermediate acetyl-CoA between CO and AO may help us better understand the development of obesity and the pathogenesis of different obesity-related diseases in humans.


Subject(s)
Acetyl Coenzyme A/metabolism , Leptin/blood , Obesity/epidemiology , Obesity/metabolism , Oxidative Phosphorylation , Adipose Tissue/metabolism , Adult , Age Factors , Age of Onset , Body Composition/physiology , Child , Female , Humans , Leptin/metabolism , Male , Oxidation-Reduction , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...