Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 9(6)2018 11 06.
Article in English | MEDLINE | ID: mdl-30401768

ABSTRACT

Pseudomonas fluorescens and related plant root ("rhizosphere")-associated species contribute to plant health by modulating defenses and facilitating nutrient uptake. To identify bacterial fitness determinants in the rhizosphere of the model plant Arabidopsis thaliana, we performed a high-throughput transposon sequencing (Tn-Seq) screen using the biocontrol and growth-promoting strain Pseudomonas sp. WCS365. The screen, which was performed in parallel on wild-type and immunocompromised Arabidopsis plants, identified 231 genes that increased fitness in the rhizosphere of wild-type plants. A subset of these genes decreased fitness in the rhizosphere of immunocompromised plants. We hypothesized that these genes might be involved in avoiding plant defenses and verified 7 Pseudomonas sp. WCS365 candidate genes by generating clean deletions. We found that two of these deletion mutants, ΔmorA (encoding a putative diguanylate cyclase/phosphodiesterase) and ΔspuC (encoding a putrescine aminotransferase), formed enhanced biofilms and inhibited plant growth. We found that mutants ΔspuC and ΔmorA induced pattern-triggered immunity (PTI) as measured by induction of an Arabidopsis PTI reporter and FLS2/BAK1-dependent inhibition of plant growth. We show that MorA acts as a phosphodiesterase to inhibit biofilm formation, suggesting a possible role in biofilm dispersal. We found that both putrescine and its precursor arginine promote biofilm formation that is enhanced in the ΔspuC mutant, which cannot break down putrescine, suggesting that putrescine might serve as a signaling molecule in the rhizosphere. Collectively, this work identified novel bacterial factors required to evade plant defenses in the rhizosphere.IMPORTANCE While rhizosphere bacteria hold the potential to improve plant health and fitness, little is known about the bacterial genes required to evade host immunity. Using a model system consisting of Arabidopsis and a beneficial Pseudomonas sp. isolate, we identified bacterial genes required for both rhizosphere fitness and for evading host immune responses. This work advances our understanding of how evasion of host defenses contributes to survival in the rhizosphere.


Subject(s)
Arabidopsis/immunology , Genome, Bacterial , Pseudomonas fluorescens/genetics , Rhizosphere , Arabidopsis/microbiology , Biofilms/growth & development , Genes, Bacterial , Genetic Fitness , Plant Immunity , Pseudomonas fluorescens/enzymology , Putrescine/metabolism
2.
Mol Ecol ; 27(8): 1833-1847, 2018 04.
Article in English | MEDLINE | ID: mdl-29087012

ABSTRACT

Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture.


Subject(s)
Arabidopsis/genetics , Brassicaceae/genetics , Plant Diseases/genetics , Pseudomonas syringae/pathogenicity , Arabidopsis/microbiology , Brassicaceae/microbiology , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Herbivory/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/microbiology , Pseudomonas syringae/genetics , Rhizosphere , Salicylic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...