Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Oncol ; 32(2): 200797, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38601972

ABSTRACT

Acute myeloid leukemia (AML), a fast-progressing hematological malignancy affecting myeloid cells, is typically treated with chemotherapy or hematopoietic stem cell transplantation. However, approximately half of the patients face relapses and 5-year survival rates are poor. With the goal to facilitate dual-specificity, boosting anti-tumor activity, and minimizing the risk for antigen escape, this study focused on combining chimeric antigen receptor (CAR) and T cell receptor (TCR) technologies. CAR'TCR-T cells, co-expressing a CD33-CAR and a transgenic dNPM1-TCR, revealed increased and prolonged anti-tumor activity in vitro, particularly in case of low target antigen expression. The distinct transcriptomic profile suggested enhanced formation of immunological synapses, activation, and signaling. Complete elimination of AML xenografts in vivo was only achieved with a cell product containing CAR'TCR-T, CAR-T, and TCR-T cells, representing the outcome of co-transduction with two lentiviral vectors encoding either CAR or TCR. A mixture of CAR-T and TCR-T cells, without CAR'TCR-T cells, did not prevent progressive tumor outgrowth and was comparable to treatment with CAR-T and TCR-T cells individually. Overall, our data underscore the efficacy of co-expressing CAR and transgenic TCR in one T cell, and might open a novel therapeutic avenue not only for AML but also other malignancies.

2.
Commun Biol ; 7(1): 392, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555407

ABSTRACT

With the increased use of gene expression profiling for personalized oncology, optimized RNA sequencing (RNA-seq) protocols and algorithms are necessary to provide comparable expression measurements between exome capture (EC)-based and poly-A RNA-seq. Here, we developed and optimized an EC-based protocol for processing formalin-fixed, paraffin-embedded samples and a machine-learning algorithm, Procrustes, to overcome batch effects across RNA-seq data obtained using different sample preparation protocols like EC-based or poly-A RNA-seq protocols. Applying Procrustes to samples processed using EC and poly-A RNA-seq protocols showed the expression of 61% of genes (N = 20,062) to correlate across both protocols (concordance correlation coefficient > 0.8, versus 26% before transformation by Procrustes), including 84% of cancer-specific and cancer microenvironment-related genes (versus 36% before applying Procrustes; N = 1,438). Benchmarking analyses also showed Procrustes to outperform other batch correction methods. Finally, we showed that Procrustes can project RNA-seq data for a single sample to a larger cohort of RNA-seq data. Future application of Procrustes will enable direct gene expression analysis for single tumor samples to support gene expression-based treatment decisions.


Subject(s)
Gene Expression Profiling , RNA , Humans , Tissue Fixation/methods , Gene Expression Profiling/methods , RNA/genetics , Sequence Analysis, RNA/methods , Machine Learning
3.
Proc Natl Acad Sci U S A ; 119(36): e2205470119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037353

ABSTRACT

Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 104 to 105 B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naïve B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination.


Subject(s)
Antibody Diversity , B-Lymphocytes , Genes, Immunoglobulin , Antibodies, Protozoan/genetics , Antigens, CD/immunology , B-Lymphocytes/immunology , Genomics , Humans , Immunoglobulin Light Chains/genetics , Leukocyte Immunoglobulin-like Receptor B1/immunology , Mutagenesis, Insertional , Plasmodium falciparum , Receptors, Antigen, T-Cell/genetics , Receptors, Immunologic/immunology
4.
J Biosci Bioeng ; 127(5): 647-654, 2019 May.
Article in English | MEDLINE | ID: mdl-30503171

ABSTRACT

Ex vivo expansion of hematopoietic progenitors is considered as an attractive tool to increase the number of stem and progenitor cells (HSPCs) for cell therapy. The efficacy of ex vivo expansion is strongly depends on the feeder cell activity to mimic hematopoietic microenvironment. Here we demonstrated, that combination of mitomycin C-induced growth arrest and tissue-related O2 (physiological hypoxia) modulated stromal capacity of adipose tissue derived stromal cells (ASCs). Growth arrest did not affect viability, stromal phenotype and multilineage potential of ASCs permanently expanded at tissue-related O2. Meanwhile, the PCR analysis revealed an up-regulation of genes, encoded molecules of cell-cell (ICAM1, HCAM/CD44) and cell-matrix adhesion (ITGs), extracellular matrix production (COLs) and remodeling (MMPs, HAS1) in growth-arrested ASCs at physiological hypoxia in comparison with ambient O2 (20%). The number of ICAM-1 positive ASCs was increased under low O2 as well. These alterations contributed into the ex vivo expansion of cord blood HSPCs providing the preferential production of primitive HSPCs. The number of cobblestone area forming cell (CAFC) colonies was 1.5-fold higher at physiological hypoxia (p < 0.05). CAFCs considered as long-term culture-initiating cells (LTC-IC) known to support long-term hematopoiesis restoration in vivo. The presented data may be applicable in the development of upscale protocols of HSPC expansion.


Subject(s)
Adipose Tissue/cytology , Hematopoiesis , Hematopoietic Stem Cells/cytology , Oxygen/metabolism , Stromal Cells/cytology , Adipose Tissue/metabolism , Cell Culture Techniques , Cell Cycle Checkpoints , Cell Proliferation , Cells, Cultured , Feeder Cells/cytology , Feeder Cells/metabolism , Female , Fetal Blood/cytology , Fetal Blood/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Male , Oxygen/analysis , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...