Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 11(4)2020 04 11.
Article in English | MEDLINE | ID: mdl-32290448

ABSTRACT

The Drosophila melanogaster polytene chromosomes are the best model for studying the genome organization during interphase. Despite of the long-term studies available on genetic organization of polytene chromosome bands and interbands, little is known regarding long gene location on chromosomes. To analyze it, we used bioinformatic approaches and characterized genome-wide distribution of introns in gene bodies and in different chromatin states, and using fluorescent in situ hybridization we juxtaposed them with the chromosome structures. Short introns up to 2 kb in length are located in the bodies of housekeeping genes (grey bands or lazurite chromatin). In the group of 70 longest genes in the Drosophila genome, 95% of total gene length accrues to introns. The mapping of the 15 long genes showed that they could occupy extended sections of polytene chromosomes containing band and interband series, with promoters located in the interband fragments (aquamarine chromatin). Introns (malachite and ruby chromatin) in polytene chromosomes form independent bands, which can contain either both introns and exons or intron material only. Thus, a novel type of the gene arrangement in polytene chromosomes was discovered; peculiarities of such genetic organization are discussed.


Subject(s)
Chromatin , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genome , Introns , Polytene Chromosomes , Animals
2.
PLoS One ; 11(6): e0157147, 2016.
Article in English | MEDLINE | ID: mdl-27300486

ABSTRACT

Late-replicating domains (intercalary heterochromatin) in the Drosophila genome display a number of features suggesting their organization is quite unique. Typically, they are quite large and encompass clusters of functionally unrelated tissue-specific genes. They correspond to the topologically associating domains and conserved microsynteny blocks. Our study aims at exploring further details of molecular organization of intercalary heterochromatin and has uncovered surprising heterogeneity of chromatin composition in these regions. Using the 4HMM model developed in our group earlier, intercalary heterochromatin regions were found to host chromatin fragments with a particular epigenetic profile. Aquamarine chromatin fragments (spanning 0.67% of late-replicating regions) are characterized as a class of sequences that appear heterogeneous in terms of their decompactization. These fragments are enriched with enhancer sequences and binding sites for insulator proteins. They likely mark the chromatin state that is related to the binding of cis-regulatory proteins. Malachite chromatin fragments (11% of late-replicating regions) appear to function as universal transitional regions between two contrasting chromatin states. Namely, they invariably delimit intercalary heterochromatin regions from the adjacent active chromatin of interbands. Malachite fragments also flank aquamarine fragments embedded in the repressed chromatin of late-replicating regions. Significant enrichment of insulator proteins CP190, SU(HW), and MOD2.2 was observed in malachite chromatin. Neither aquamarine nor malachite chromatin types appear to correlate with the positions of highly conserved non-coding elements (HCNE) that are typically replete in intercalary heterochromatin. Malachite chromatin found on the flanks of intercalary heterochromatin regions tends to replicate earlier than the malachite chromatin embedded in intercalary heterochromatin. In other words, there exists a gradient of replication progressing from the flanks of intercalary heterochromatin regions center-wise. The peculiar organization and features of replication in large late-replicating regions are discussed as possible factors shaping the evolutionary stability of intercalary heterochromatin.


Subject(s)
Chromosomes, Insect/genetics , Drosophila melanogaster/genetics , Heterochromatin/genetics , Animals , Chromosomes, Insect/chemistry , DNA Replication Timing , Drosophila melanogaster/chemistry , Gene Expression Regulation , Heterochromatin/chemistry , Regulatory Sequences, Nucleic Acid
3.
PLoS One ; 9(7): e101631, 2014.
Article in English | MEDLINE | ID: mdl-25072930

ABSTRACT

Drosophila melanogaster polytene chromosomes display specific banding pattern; the underlying genetic organization of this pattern has remained elusive for many years. In the present paper, we analyze 32 cytology-mapped polytene chromosome interbands. We estimated molecular locations of these interbands, described their molecular and genetic organization and demonstrate that polytene chromosome interbands contain the 5' ends of housekeeping genes. As a rule, interbands display preferential "head-to-head" orientation of genes. They are enriched for "broad" class promoters characteristic of housekeeping genes and associate with open chromatin proteins and Origin Recognition Complex (ORC) components. In two regions, 10A and 100B, coding sequences of genes whose 5'-ends reside in interbands map to constantly loosely compacted, early-replicating, so-called "grey" bands. Comparison of expression patterns of genes mapping to late-replicating dense bands vs genes whose promoter regions map to interbands shows that the former are generally tissue-specific, whereas the latter are represented by ubiquitously active genes. Analysis of RNA-seq data (modENCODE-FlyBase) indicates that transcripts from interband-mapping genes are present in most tissues and cell lines studied, across most developmental stages and upon various treatment conditions. We developed a special algorithm to computationally process protein localization data generated by the modENCODE project and show that Drosophila genome has about 5700 sites that demonstrate all the features shared by the interbands cytologically mapped to date.


Subject(s)
Chromosome Banding , Chromosomes, Insect , Drosophila melanogaster/genetics , Animals , Chromatin/genetics , Chromatin/metabolism , DNA Transposable Elements , DNA-Binding Proteins , Genome-Wide Association Study , Genomics/methods , Histones/metabolism , Interphase , Physical Chromosome Mapping , Polytene Chromosomes
SELECTION OF CITATIONS
SEARCH DETAIL
...