Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
J Hematol Oncol ; 17(1): 40, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835055

ABSTRACT

Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.


Subject(s)
Immunotherapy , Pancreatic Neoplasms , Tumor Microenvironment , Humans , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/immunology , Immunotherapy/methods , Tumor Microenvironment/immunology , Cancer Vaccines/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Animals , Immunotherapy, Adoptive/methods
2.
Int Immunopharmacol ; 135: 112328, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38796962

ABSTRACT

Alzheimer's disease (AD), as a neurodegenerative disorder, distresses the elderly in large numbers and is characterized by ß-amyloid (Aß) accumulation, elevated tau protein levels, and chronic inflammation. The brain's immune system is aided by microglia and astrocytes, which produce chemokines and cytokines. Nevertheless, dysregulated expression can cause hyperinflammation and lead to neurodegeneration. CCL2/CCR2 chemokines are implicated in neurodegenerative diseases exacerbating. Inflicting damage on nerves and central nervous system (CNS) cells is the function of this axis, which recruits and migrates immune cells, including monocytes and macrophages. It has been shown that targeting the CCL2/CCR2 axis may be a therapeutic option for inflammatory diseases. Using the current knowledge about the involvement of the CCL2/CCR2 axis in the immunopathogenesis of AD, this comprehensive review synthesizes existing information. It also explores potential therapeutic options, including modulation of the CCL2/CCR2 axis as a possible strategy in AD.


Subject(s)
Alzheimer Disease , Chemokine CCL2 , Receptors, CCR2 , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/immunology , Humans , Receptors, CCR2/metabolism , Chemokine CCL2/metabolism , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/immunology , Brain/metabolism , Brain/immunology
3.
Iran J Immunol ; 21(2)2024 May 27.
Article in English | MEDLINE | ID: mdl-38800958

ABSTRACT

Background: It is well-known that TH1 and Treg cells exert anti- and pro-tumorigenic activity, respectively. Thus, TH1 cell suppression together with Treg cell hyperactivation contribute to tumor development. Glycyrrhiza glabra (G. glabra) has various immunomodulatory and anti-tumorigenic properties. Objective: To explore the impacts of G. glabra extract on different parameters related to TH1 and Treg cells using a breast cancer (BC) model. Methods: Four groups of Balb/C mice bearing 4T1 cell-induced BC were treated intraperitoneally with either saline or G. glabra extract at dosages of 50, 100 and 150 mg/kg (G. glabra-50, G. glabra-100, and G. glabra-150, respectively). After sacrificing animals on day 26, the frequency of splenic TH1 and Treg cells, the levels of serum IFN-γ, TGF-ß, and IL-12, and intra-tumoral expressions of granzyme-B, T-bet, and FOXP3 were assessed. Results: Compared to untreated tumor control (UTC) group, treatment with G. glabra-50, G. glabra-100, or G. glabra-150 increased the survival rate, percentage of TH1 cells, and T-bet expression. Conversely, they reduced the percentage of Treg cells, and serum TGF-ß levels. In comparison to the UTC group, treatment with G. glabra-50 and G. glabra-150 increased the serum IL-12 levels. Treatment with G. glabra-100 and G. glabra-150 boosted granzyme-B expression. Treatment with G. glabra-150 elevated IFN-γ levels, while treatment with G. glabra-50 decreased the FOXP3 expression. IL-12 levels were higher in mice treated with G. glabra-150 compared to those treated with G. glabra-100. Conclusion: Treatment of mice with BC using G. glabra extract improved survival rate, reduced tumor growth, and modulated T cell-mediated immune responses.

4.
Biomark Res ; 12(1): 35, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515166

ABSTRACT

Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.

5.
BMC Immunol ; 25(1): 20, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515019

ABSTRACT

BACKGROUND: The human interleukin-17 (IL-17) family comprises IL-17A to IL-17 F; their receptors are IL-17RA to IL-17RE. Evidence revealed that these cytokines can have a tumor-supportive or anti-tumor impact on human malignancies. The purpose of this study was to assess the expression of CXCR2, IL-17RA, and IL-17RC genes at the mRNA level as well as tissue and serum levels of IL-17A, vascular endothelial growth factor (VEGF), and transforming growth factor ß (TGF-ß) in patients with bladder cancer (BC) compared to control. RESULTS: This study showed that gene expression of IL-17RA, IL-17RC, and CXCR2 in the tumoral tissue of BC patients was significantly upregulated compared with normal tissue. The findings disclosed a significant difference in the serum and tissue concentrations of IL-17A, VEGF, and TGF-ß between the patient and the control groups, as well as tumor and normal tissues. CONCLUSION: This study reveals notable dysregulation of CXCR2, IL-17RA, and IL-17RC genes, alongside changes in IL-17A, VEGF, and TGF-ß levels in patients with BC than in controls. These findings indicate their possible involvement in BC development and their potential as diagnostic and therapeutic targets.


Subject(s)
Interleukin-17 , Urinary Bladder Neoplasms , Humans , Interleukin-17/genetics , Interleukin-17/metabolism , Vascular Endothelial Growth Factor A/genetics , Angiogenesis , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/metabolism , Chemokines , Urinary Bladder Neoplasms/genetics , Transforming Growth Factor beta
6.
Front Immunol ; 15: 1283364, 2024.
Article in English | MEDLINE | ID: mdl-38357542

ABSTRACT

Introduction: Pancreatic cancer is a truculent disease with limited treatment options and a grim prognosis. Immunotherapy has shown promise in treating various types of cancer, but its effectiveness in pancreatic cancer has been lacking. As a result, it is crucial to identify markers associated with immunological pathways in order to improve the treatment outcomes for this deadly cancer. The purpose of this study was to investigate the diagnostic and prognostic significance of three markers, CD8, CD68, and VISTA, in pancreatic ductal adenocarcinoma (PDAC), the most common subtype of pancreatic cancer. Methods: We analyzed gene expression data from Gene Expression Omnibus (GEO) database using bioinformatics tools. We also utilized the STRING online tool and Funrich software to study the protein-protein interactions and transcription factors associated with CD8, CD68, and VISTA. In addition, tissue microarray (TMA) and immunohistochemistry (IHC) staining were performed on 228 samples of PDAC tissue and 10 samples of normal pancreatic tissue to assess the expression levels of the markers. We then correlated these expression levels with the clinicopathological characteristics of the patients and evaluated their survival rates. Results: The analysis of the GEO data revealed slightly elevated levels of VISTA in PDAC samples compared to normal tissues. However, there was a significant increase in CD68 expression and a notable reduction in CD8A expression in pancreatic cancer. Further investigation identified potential protein-protein interactions and transcription factors associated with these markers. The IHC staining of PDAC tissue samples showed an increased expression of VISTA, CD68, and CD8A in pancreatic cancer tissues. Moreover, we found correlations between the expression levels of these markers and certain clinicopathological features of the patients. Additionally, the survival analysis revealed that high expression of CD8 was associated with better disease-specific survival and progression-free survival in PDAC patients. Conclusion: These findings highlight the potential of CD8, CD68, and VISTA as diagnostic and prognostic indicators in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , CD8-Positive T-Lymphocytes , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Prognosis , Transcription Factors , CD8 Antigens/metabolism
7.
Adv Rheumatol ; 64(1): 11, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38268022

ABSTRACT

BACKGROUND: Interleukin-17 (IL-17) family plays a role in the pathogenesis of knee osteoarthritis (KOA) by contributing to the inflammatory and destructive processes in the affected joint. This study aimed to measure levels of IL-17 A and IL-25 (IL-17E) in serum of KOA patients and determine their roles in the disease severity of patients. METHODS: In this, 34 patients with KOA and 30 age and sex-matched healthy subjects (HS) were enrolled. Patients were categorized based on their Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analog Scale (VAS), and Body Mass Index (BMI) scores. The enzyme-linked immunosorbent assay (ELISA) technique was employed to measure serum levels of IL-17 A and IL-25. RESULTS: Level of IL-25 was significantly higher (P < 0.0001) in the KOA subjects than HS. IL-17 A level was significantly higher in KOA cases with WOMAC < 40 (P < 0.0001) in comparison to HS. IL-25 level was significantly higher in the KOA cases with WOMAC < 40 (P < 0.0001) and with WOMAC ≥ 40 (P < 0.0001) compared to HS. IL-17 A concentration was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) compared to HS. IL-25 level was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) and with VAS ≥ 5 (P < 0.0001) in comparison to HS. KOA patients with BMI ≥ 30 had significantly higher IL-17 A and IL-25 concentration in comparison to HS. CONCLUSIONS: The serum level of IL-25 in KOA patients is increased probably due to negative controlling feedback on inflammatory responses, which can be associated with obesity and disease activity.


Subject(s)
Interleukin-17 , Osteoarthritis, Knee , Humans , Patient Acuity , Body Mass Index , Cytokines
8.
Immunopharmacol Immunotoxicol ; 46(1): 73-85, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37647347

ABSTRACT

PURPOSE: In dendritic cells (DCs), leptin as an immune-regulating hormone, increases the IL-12 generation whereas it reduces the IL-10 production, thus contributing to TH1 cell differentiation. Using a murine model of breast cancer (BC), we evaluated the impacts of the Leptin and/or lipopolysaccharide (LPS)-treated DC vaccine on various T-cell-related immunological markers. MATERIALS AND METHODS: Tumors were established in mice by subcutaneously injecting 7 × 105 4T1 cells into the right flank. Mice received the DC vaccines pretreated with Leptin, LPS, and both Leptin/LPS, on days 12 and 19 following tumor induction. The animals were sacrificed on day 26 and after that the frequency of the splenic cytotoxic T lymphocytes (CTLs) and TH1 cells; interferon gamma (IFN-γ), interleukin 12 (IL-12) and tumor growth factor beta (TGF-ß) generation by tumor lysate-stimulated spleen cells, and the mRNA expression of T-bet, FOXP3 and Granzyme B in the tumors were measured with flow cytometry, ELISA and real-time PCR methods, respectively. RESULTS: Leptin/LPS-treated mDC group was more efficient in blunting tumor growth (p = .0002), increasing survival rate (p = .001), and preventing metastasis in comparison with the untreated tumor-bearing mice (UT-control). In comparison to the UT-control group, treatment with Leptin/LPS-treated mDC also significantly increased the splenic frequencies of CTLs (p < .001) and TH1 cells (p < .01); promoted the production of IFN-γ (p < .0001) and IL-12 (p < .001) by splenocytes; enhanced the T-bet (p < .05) and Granzyme B (p < .001) expression, whereas decreased the TGF-ß and FOXP3 expression (p < .05). CONCLUSION: Compared to the Leptin-treated mDC and LPS-treated mDC vaccines, the Leptin/LPS-treated mDC vaccine was more effective in inhibiting BC development and boosting immune responses against tumor.


Subject(s)
Neoplasms , Vaccines , Mice , Animals , Lipopolysaccharides/pharmacology , Granzymes/metabolism , Leptin/metabolism , Immunity, Cellular , Transforming Growth Factor beta/metabolism , Interferon-gamma/metabolism , Models, Animal , Neoplasms/metabolism , Interleukin-12 , Vaccines/metabolism , Dendritic Cells , Forkhead Transcription Factors/metabolism
9.
Crit Rev Oncol Hematol ; 193: 104200, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981104

ABSTRACT

IL-1, plays a role in some pathological inflammatory conditions. This pro-inflammatory cytokine also has a crucial role in tumorigenesis and immune responses in the tumor microenvironment (TME). IL-1 receptor accessory protein (IL-1RAP), combined with IL-1 receptor-1, provides a functional complex for binding and signaling. In addition to the direct role of IL-1, some studies demonstrated that IL1-RAP has essential roles in the progression, angiogenesis, and metastasis of solid tumors such as gastrointestinal tumors, lung carcinoma, glioma, breast and cervical cancers. This molecule also interacts with FLT-3 and c-Kit tyrosine kinases and is involved in the pathogenesis of hematological malignancies such as acute myeloid lymphoma. Additionally, IL-1RAP interacts with solute carrier family 3 member 2 (SLC3A2) and thereby increasing the resistance to anoikis and metastasis in Ewing sarcoma. This review summarizes the role of IL-1RAP in different types of cancers and discusses its targeting as a novel therapeutic approach for malignancies.


Subject(s)
Gastrointestinal Neoplasms , Interleukin-1 Receptor Accessory Protein , Humans , Receptors, Interleukin-1 , Interleukin-1/therapeutic use , Immunotherapy , Tumor Microenvironment
10.
Adv Rheumatol ; 64: 11, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1550010

ABSTRACT

Abstract Background Interleukin-17 (IL-17) family plays a role in the pathogenesis of knee osteoarthritis (KOA) by contributing to the inflammatory and destructive processes in the affected joint. This study aimed to measure levels of IL-17 A and IL-25 (IL-17E) in serum of KOA patients and determine their roles in the disease severity of patients. Methods In this, 34 patients with KOA and 30 age and sex-matched healthy subjects (HS) were enrolled. Patients were categorized based on their Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analog Scale (VAS), and Body Mass Index (BMI) scores. The enzyme-linked immunosorbent assay (ELISA) technique was employed to measure serum levels of IL-17 A and IL-25. Results Level of IL-25 was significantly higher (P < 0.0001) in the KOA subjects than HS. IL-17 A level was significantly higher in KOA cases with WOMAC < 40 (P < 0.0001) in comparison to HS. IL-25 level was significantly higher in the KOA cases with WOMAC < 40 (P < 0.0001) and with WOMAC ≥ 40 (P < 0.0001) compared to HS. IL-17 A concentration was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) compared to HS. IL-25 level was significantly higher in the KOA cases with VAS < 5 (P < 0.0001) and with VAS ≥ 5 (P < 0.0001) in comparison to HS. KOA patients with BMI ≥ 30 had significantly higher IL-17 A and IL-25 concentration in comparison to HS. Conclusions The serum level of IL-25 in KOA patients is increased probably due to negative controlling feedback on inflammatory responses, which can be associated with obesity and disease activity.

11.
Inflammopharmacology ; 31(6): 3005-3020, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37805959

ABSTRACT

The pathogenesis of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2), is complex and involves dysregulated immune responses, inflammation, and coagulopathy. Purinergic signaling, mediated by extracellular nucleotides and nucleosides, has emerged as a significant player in the pathogenesis of COVID-19. Extracellular adenosine triphosphate (ATP), released from damaged or infected cells, is a danger signal triggering immune responses. It activates immune cells, releasing pro-inflammatory cytokines, contributing to the cytokine storm observed in severe COVID-19 cases. ATP also promotes platelet activation and thrombus formation, contributing to the hypercoagulability seen in COVID-19 patients. On the other hand, adenosine, an immunosuppressive nucleoside, can impair anti-viral immune responses and promote tissue damage through its anti-inflammatory effects. Modulating purinergic receptors represents a promising therapeutic strategy for COVID-19. Understanding the role of purinergic signaling in COVID-19 pathogenesis and developing targeted therapeutic approaches can potentially improve patient outcomes. This review focuses on the part of purinergic signaling in COVID-19 pathogenesis and highlights potential therapeutic approaches targeting purinergic receptors.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Adenosine Triphosphate , Adenosine , Receptors, Purinergic
12.
Front Endocrinol (Lausanne) ; 14: 1139692, 2023.
Article in English | MEDLINE | ID: mdl-37654571

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is potentially pathogenic and causes severe symptoms; in addition to respiratory syndromes, patients might experience other severe conditions such as digestive complications and liver complications injury. The abnormality in the liver is manifested by hepatobiliary dysfunction and enzymatic elevation, which is associated with morbidity and mortality. The direct cytopathic effect, immune dysfunction, cytokine storm, and adverse effects of therapeutic regimens have a crucial role in the severity of liver injury. According to aging and immune system alterations, cytokine patterns may also change in the elderly. Moreover, hyperproduction of cytokines in the inflammatory response to SARS-CoV-2 can lead to multi-organ dysfunction. The mortality rate in elderly patients, particularly those with other comorbidities, is also higher than in adults. Although the pathogenic effect of SARS-CoV-2 on the liver has been widely studied, the impact of age and immune-mediated responses at different ages remain unclear. This review discusses the association between immune system responses in coronavirus disease 2019 (COVID-19) patients of different ages and liver injury, focusing on cytokine alterations.


Subject(s)
COVID-19 , Adult , Aged , Humans , COVID-19/complications , SARS-CoV-2 , Liver , Aging , Cytokines
13.
J Biomol Struct Dyn ; : 1-14, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37705281

ABSTRACT

Chemotherapeutic treatment of colorectal cancer (CRC) has not been satisfactory until now; therefore, the discovery of more efficient medications is of great significance. Based on available knowledge, the CXCL12/CXCR4 axis plays a significant role in tumorigenesis, and inhibition of CXCR4 chemokine receptor with AMD3100 is one of the most known therapeutic modalities in cancer therapy. Herein, N, N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (A1) was synthesized as a potent CXCR4 inhibitor. A1 inhibitory activity was first evaluated employing Molecular Docking simulations in comparison with the most potent CXCR4 inhibitors. Then, the antiproliferative and cytotoxic effect of A1 on CT26 mouse CRC cells was investigated by MTT assay technique and compared with those of the control molecule, AMD3100. The impact of the target compounds IC50 on apoptosis, cell cycle arrest, and CXCR4 expression was determined by flow cytometry technique. Our finding demonstrated that A1 induces a cytotoxic effect on CT26 cells at 60 µg/mL concentration within 72 h and provokes cell apoptosis and G2/M cell cycle arrest in comparison with the untreated cells, while AMD3100 did not show a cytotoxic effect up to 800 µg/mL dose. The obtained results show that A1 (at a concentration of 40 µg/mL) significantly reduced the proliferation of CT26 cells treated with 100 ng/mL of CXCL12 in 72 h. Moreover, treatment with 60 µg/mL of A1 and 100 ng/mL of CXCL12 for 72 h significantly decreased the number of cells expressing the CXCR4 receptor compared to the control group treated with CXCL12. Eventually, the obtained results indicate that A1, as a dual-function fluorinated small molecule, may benefit CRC treatment through inhibition of CXCR4 and exert a cytotoxic effect on tumor cells.Communicated by Ramaswamy H. Sarma.

14.
Biomed Pharmacother ; 167: 115557, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37757491

ABSTRACT

Radiotherapy as a standard method for cancer treatment faces tumor recurrence and antitumoral unresponsiveness. Suppressive tumor microenvironment (TME) and hypoxia are significant challenges affecting efficacy of radiotherapy. Herein, a versatile method is introduced for the preparation of pH-sensitive catalase-gold cross-linked nanoaggregate (Au@CAT) having acceptable stability and selective activity in tumor microenvironment. Combining Au@CAT with low-dose radiotherapy enhanced radiotherapy effects via polarizing protumoral immune cells to the antitumoral landscape. This therapeutic approach also attenuated hypoxia, confirmed by downregulating hypoxia hallmarks, such as hypoxia-inducible factor α-subunits (HIF-α), vascular endothelial growth factor (VEGF), and EGF. Catalase stability against protease digestion was improved significantly in Au@CAT compared to the free catalase. Moreover, minimal toxicity of Au@CAT on normal cells and increased reactive oxygen species (ROS) were confirmed in vitro compared with radiotherapy. Using the nanoaggregates combined with radiotherapy led to a significant reduction of immunosuppressive infiltrating cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (T-regs) compared to the other groups. While, this combined therapy could significantly increase the frequency of CD8+ cells as well as M1 to M2 macrophages (MQs) ratio. The combination therapy also reduced the tumor size and increased survival rate in mice models of colorectal cancer (CRC). Our results indicate that this innovative nanocomposite could be an excellent system for catalase delivery, manipulating the TME and providing a potential therapeutic strategy for treating CRC.

15.
Cell Commun Signal ; 21(1): 261, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749597

ABSTRACT

Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.


Subject(s)
Exosomes , Extracellular Vesicles , Virus Diseases , Humans , Killer Cells, Natural , Cell Communication
16.
Int Immunopharmacol ; 122: 110470, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37433246

ABSTRACT

Researchers have tried to find novel strategies for cancer treatment in the past decades. Among the utilized methods, administering oncolytic viruses (OVs) alone or combined with other anticancer therapeutic approaches has had promising outcomes, especially in solid tumors. Infecting the tumor cells by these viruses can lead to direct lysis or induction of immune responses. However, the immunosuppressive tumor microenvironment (TME) is considered a significant challenge for oncolytic virotherapy in treating cancer. Based on OV type, hypoxic conditions in the TME can accelerate or repress virus replication. Therefore, genetic manipulation of OVs or other molecular modifications to reduce hypoxia can induce antitumor responses. Moreover, using OVs with tumor lysis capability in the hypoxic TME may be an attractive strategy to overcome the limitations of the therapy. This review summarizes the latest information available in the field of cancer virotherapy and discusses the dual effect of hypoxia on different types of OVs to optimize available related therapeutic methods.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Neoplasms/pathology , Oncolytic Viruses/genetics , Tumor Microenvironment , Virus Replication
17.
Med Oncol ; 40(6): 179, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37188900

ABSTRACT

Apelin/APJ axis plays a critical role in cancer progression, thus its targeting inhibits tumor growth. However, blocking of Apelin/APJ axis in combination with immunotherapeutic approaches may be more effective. This study aimed to investigate the effects of APJ antagonist ML221 in combination with a DC vaccine on angiogenic, metastatic and apoptotic-related factors in a breast cancer (BC) model. Four groups of female BALB/c mice with 4T1-induced BC were treated with PBS, APJ antagonist ML221, DC vaccine, and "ML221 + DC vaccine". After completion of the treatment, the mice were sacrificed and the serum levels of IL-9 and IL-35 as well as the mRNA expression of angiogenesis (including VEGF, FGF-2, and TGF-ß), metastasis (including MMP-2, MMP-9, CXCR4) and apoptosis-related markers (Bcl-2, Bax, Caspase-3) in tumor tissues were determined using ELISA and real-time PCR, respectively. Angiogenesis was also evaluated by co-immunostaining of tumor tissues with CD31 and DAPI. Primary tumor metastasis to the liver was analyzed using hematoxylin-eosin staining. The efficiency of combination therapy with "ML221 + DC vaccine" was remarkably higher than single therapies in preventing liver metastasis compared to the control group. In comparison with the control group, combination therapy could significantly reduce the expression of MMP-2, MMP-9, CXCR4, VEGF, FGF-2, and TGF-ß in tumor tissues (P < 0.05). It also decreased the serum level of IL-9 and IL-35 compared with the control group (P < 0.0001). Moreover, vascular density and vessel diameter were significantly reduced in the combination therapy group compared with the control group (P < 0.0001). Overall, our findings demonstrate that combination therapy using a blocker of the apelin/APJ axis and DC vaccine can be considered a promising therapeutic program in cancers.


Subject(s)
Breast Neoplasms , Liver Neoplasms , Animals , Female , Mice , Apelin/genetics , Apelin/metabolism , Apelin Receptors/genetics , Apelin Receptors/metabolism , Breast Neoplasms/therapy , Dendritic Cells/metabolism , Fibroblast Growth Factor 2 , Interleukin-9 , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Transforming Growth Factor beta , Vaccine Efficacy , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
18.
Int Immunopharmacol ; 119: 110246, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37148769

ABSTRACT

Evidence demonstrates that T cells are implicated in developing SLE, and each of them dominantly uses distinct metabolic pathways. Indeed, intracellular enzymes and availability of specific nutrients orchestrate fate of T cells and lead to differentiation of regulatory T cells (Treg), memory T cells, helper T cells, and effector T cells. The function of T cells in inflammatory and autoimmune responses is determined by metabolic processes and activity of their enzymes. Several studies were conducted to determine metabolic abnormalities in SLE patients and clarify how these modifications could control the functions of the involved T cells. Metabolic pathways such as glycolysis, mitochondrial pathways, oxidative stress, mTOR pathway, fatty acid and amino acid metabolisms are dysregulated in SLE T cells. Moreover, immunosuppressive drugs used in treating autoimmune diseases, including SLE, could affect immunometabolism. Developing drugs to regulate autoreactive T cell metabolism could be a promising therapeutic approach for SLE treatment. Accordingly, increased knowledge about metabolic processes paves the way to understanding SLE pathogenesis better and introduces novel therapeutic options for SLE treatment. Although monotherapy with metabolic pathways modulators might not be sufficient to prevent autoimmune disease, they may be an ideal adjuvant to reduce administration doses of immunosuppressive drugs, thus reducing drug-associated adverse effects. This review summarized emerging data about T cells that are involved in SLE pathogenesis, focusing on immunometabolism dysregulation and how these modifications could affect the disease development.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Skin Diseases , Humans , T-Lymphocytes, Helper-Inducer , T-Lymphocytes, Regulatory , Oxidative Stress , Immunosuppressive Agents
19.
Adv Med Sci ; 68(1): 157-168, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37003235

ABSTRACT

PURPOSE: Prostaglandin E2 (PGE2), a product of cyclooxygenase (COX) pathway of arachidonic acid, exerts inhibitory impacts on dendritic cell (DC) activity to repress anti-tumor immune responses. Therefore, targeting COX during DC vaccine generation may enhance DC-mediated antitumor responses. We aimed to investigate the impacts of DC vaccine treated with celecoxib (CXB), a selective COX2 inhibitor, on some T cell-related parameters. MATERIALS AND METHODS: Breast cancer (BC) was induced in BALB/c mice, and then they received DC vaccine treated with lipopolysaccharide (LPS-mDCs), LPS with a 5 â€‹µM dose of CXB (LPS/CXB5-mDCs) and LPS with a 10 â€‹µM dose of CXB (LPS/CXB10-mDCs). The frequency of splenic Th1 and Treg cells and amounts of IFN-γ, IL-12 and TGF-ß production by splenocytes, as well as, the expression of Granzyme-B, T-bet and FOXP3 in tumors were determined using flow cytometry, ELISA, and real-time PCR, respectively. RESULTS: Compared with untreated tumor group (T-control), treatment with LPS/CXB5-mDCs and LPS/CXB10-mDCs decreased tumor growth (P â€‹= â€‹0.009 and P â€‹< â€‹0.0001), escalated survival rate (P â€‹= â€‹0.002), increased the frequency of splenic Th1 cells (P â€‹= â€‹0.0872, and P â€‹= â€‹0.0155), increased the IFN-γ (P â€‹= â€‹0.0003 and P â€‹= â€‹0.0061) and IL-12 (P â€‹= â€‹0.001 and P â€‹= â€‹0.0009) production by splenocytes, upregulated T-bet (P â€‹= â€‹0.062 and P â€‹< â€‹0.0001) and Granzyme-B (P â€‹= â€‹0.0448 and P â€‹= â€‹0.4485), whereas decreased the number of Treg cells (P â€‹= â€‹0.0014, and P â€‹= â€‹0.0219), reduced the amounts of TGF-ß production by splenocytes (P â€‹= â€‹0.0535 and P â€‹= â€‹0.0169), and reduced the expression of FOXP3 (P â€‹= â€‹0.0006 and P â€‹= â€‹0.0057) in comparison with T-control group. CONCLUSIONS: Our findings show that LPS/CXB-treated DC vaccine potently modulated antitumor immune responses in a mouse BC model.


Subject(s)
Neoplasms , Vaccines , Animals , Mice , Celecoxib/pharmacology , Celecoxib/therapeutic use , Granzymes , Lipopolysaccharides , Interleukin-12 , Immunity, Cellular , Transforming Growth Factor beta , Dendritic Cells , Vaccination , Forkhead Transcription Factors
20.
BMC Infect Dis ; 23(1): 248, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072722

ABSTRACT

BACKGROUND: Evidence revealed that age could affect immune responses in patients with the acute respiratory syndrome of coronavirus 2 (SARS-CoV-2) infection. This study investigated the impact of age on immune responses, especially on the interaction between the tumor growth factor-ß (TGF-ß) and interferon type-I (IFN-I) axes in the pathogenesis of novel coronavirus disease 2019 (COVID-19). METHODS: This age-matched case-control investigation enrolled 41 COVID-19 patients and 40 healthy controls categorized into four groups, including group 1 (up to 20 years), group 2 (20-40 years), group 3 (40-60 years), and group 4 (over 60 years). Blood samples were collected at the time of admission. The expression of TGF-ßRI, TGF-ßRII, IFNARI, IFNARII, interferon regulatory factor 9 (IRF9), and SMAD family member 3 (SMAD3) was measured using the real-time PCR technique. In addition, serum levels of TGF-ß, IFN-α, and SERPINE1 were measured by the enzyme-linked immunosorbent assay (ELISA) technique. All biomarkers were measured and analyzed in the four age studies groups. RESULTS: The expression of TGF-ßRI, TGF-ßRII, IFNARI, IFNARII, IRF9, and SMAD3 was markedly upregulated in all age groups of patients compared with the matched control groups. Serum levels of IFN-α and SERPINE1 were significantly higher in patient groups than in control groups. While TGF-ß serum levels were only significantly elevated in the 20 to 40 and over 60 years patient group than in matched control groups. CONCLUSIONS: These data showed that the age of patients, at least at the time of admission, may not significantly affect TGF-ß- and IFN-I-associated immune responses. However, it is possible that the severity of the disease affects these pathway-mediated responses, and more studies with a larger sample size are needed to verify it.


Subject(s)
COVID-19 , Interferon Type I , Neoplasms , Humans , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , SARS-CoV-2 , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...