Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 105(3): 2275-2287, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34998549

ABSTRACT

We aimed to evaluate the effects of dietary supplementation with magnesium oxide and calcium-magnesium dolomite on milk fat synthesis and milk fatty acid profile or persistency in milk fat synthesis after their cessation in dairy cows under milk fat depression conditions. Twenty-four multiparous dairy cows in early lactation (mean ± standard deviation; 112 ± 14 d in milk) were used in a randomized complete block design. Milk fat depression was induced in all cows for 10 d by feeding a diet containing 35.2% starch, 28.7% neutral detergent fiber, and 4.8% total fatty acid (dry matter). The experiment was conducted in 2 periods. During the Mg-supplementation period (d 1-20), cows were randomly assigned to (1) the milk fat depression diet used during the induction phase (control; n = 8), (2) the control diet plus 0.4% magnesium oxide (MG; n = 8), or (3) the control diet plus 0.8% calcium-magnesium dolomite (CMC; n = 8). Compared with the control group, feeding the magnesium-supplemented diets increased milk fat concentration and yield by 12% within 4 d. During the 20-d Mg-supplementation period, both the MG and CMC diets increased milk fat concentration and yield, as well as 3.5% fat-corrected milk and energy-corrected milk yield, without affecting dry matter intake, milk yield, and milk protein and lactose concentrations. In the Mg-cessation period (d 21-30), all cows received the control diet, which resulted in a greater milk fat concentration and yield in the cows that had already received the MG and CMC diets in the Mg-supplementation period. Whereas, milk fat concentration and yield remained high after discontinuation of the magnesium-containing alkalizer until d 27. The difference in milk fat synthesis was associated with lower trans-10 C18:1 (-22%) and higher trans-11 C18:1 (+12.5%) concentrations in milk during the Mg-supplementation period. Furthermore, it was evident that within 2 d of supplementation, the trans-10:trans-11 ratio was lower in MG and CMC cows compared with cows receiving the control. This suggested that the effect of magnesium-based alkalizers on milk fat synthesis was mediated via a shift in ruminal biohydrogenation of cis-9,cis-12 C18:2 in the rumen. In conclusion, abrupt addition of magnesium oxide and calcium-magnesium dolomite increased milk fat synthesis, which persisted for 7 d after cessation of magnesium-based alkalizers. A similar ability to recover milk fat synthesis and normal fatty acid biohydrogenation pathways was observed for magnesium oxide and calcium-magnesium dolomite.


Subject(s)
Animal Feed , Magnesium , Animal Feed/analysis , Animals , Cattle , Depression , Diet/veterinary , Dietary Supplements , Fatty Acids/metabolism , Female , Lactation , Magnesium/metabolism , Rumen/metabolism
2.
Asian-Australas J Anim Sci ; 26(7): 935-44, 2013 Jul.
Article in English | MEDLINE | ID: mdl-25049871

ABSTRACT

Essential oils have been shown to favorably effect in vitro ruminal fermentation, but there are few in vivo studies that have examined animal responses. The objective of this study was to evaluate the effects of thyme (THY) and cinnamon (CIN) essential oils on feed intake, growth performance, ruminal fermentation and blood metabolites in feedlot calves fed high-concentrate diets. Twelve growing Holstein calves (213±17 kg initial BW) were used in a completely randomized design and received their respective dietary treatments for 45 d. Treatments were: 1-control (no additive), 2-THY (5 g/d/calf) and 3-CIN (5 g/d/calf). Calves were fed ad libitum diets consisting of 15% forage and 85% concentrate, and adapted to the finishing diet by gradually increasing the concentrate ratio with feeding a series of transition diets 5 wk before the experiment started. Supplementation of THY or CIN did not affect DMI and ADG, and feed efficiency was similar between treatment groups. There were no effects of additives on ruminal pH and rumen concentrations of ammonia nitrogen and total VFA; whereas molar proportion of acetate and ratio of acetate to propionate decreased, and the molar proportion of propionate increased with THY and CIN supplementation. Rumen molar concentration of butyrate was significantly increased by adding CIN compared to control; but no change was observed with THY compared with control group. No effects of THY, or CIN were observed on valerate, isobutyrate or isovalerate proportions. Plasma concentrations of glucose, cholesterol, triglyceride, urea-N, ß-hydroxybutyrate, alanine aminotransferase and aspartate aminotransferase were not changed by feeding THY or CIN. Results from this study suggest that supplementing a feedlot finishing diet with THY or CIN essential oil might be useful as ruminal fermentation modifiers in beef production systems, but has minor impacts on blood metabolites.

3.
Drug Chem Toxicol ; 24(4): 359-420, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11665649

ABSTRACT

Research continues to support the theory of endocrine disruption. Endocrine disruption is defined as the ability of a chemical contaminating the workplace or the environment to interfere with homeostasis, development, reproduction, and/or behavior in a living organism or it's offspring. Certain classes of environmentally persistent chemicals such as polychlorinated biphenyls (PCBs), dioxins, furans, and some pesticides can adversely effect the endocrine systems of aquatic life and terrestrial wildlife. The University of Tennessee, Knoxville (UTN), developed a method for hazard scoring chemicals for the aquatic ecosystem. The Indiana Clean Manufacturing Technology and Safe Materials Institute at Purdue University (CMTI) later expanded the scoring system to include terms for worker hazard as well as terms for contamination of soil and air quality, and for stratospheric ozone depletion. We call the CMTI chemical hazard score the Purdue score. At West Virginia University, two improvements of the Purdue chemical hazard score are developed, a normalizing of the term for soil contamination, and addition of hazard score terms for ecosystem endocrine disruption. The results of incorporating endocrine disruption terms into the hazard scoring equations resulted in increased hazard rankings, often substantially increased, for 26 endocrine disrupting chemicals (EDCs) among 200 Superfund chemicals. Because data suggesting human endocrine disruption from such chemicals is still controversial, no endocrine disruptor term has been added to the human toxicity portions of the chemical hazard scoring system at this time. The third product of this work is assembly of a current consolidated list of (1) established or probable, mostly synthetic, industrial chemical and medication EDCs and (2) suspect (less certain) synthetic and natural (phytoestrogen) possible endocrine disrupting chemicals, with the goal of contributing to future development of quantitative structure activity relationship software for predicting whether an untested chemical is likely to be an endocrine disruptor. We conclude that enough endocrine disrupting chemicals are now identified to make an attempt at developing structure activity estimates of disrupting potential worthwhile. Further, we conclude that within a group of 200 chemicals of concern to the US EPA, the addition of endocrine disrupting terms to the Purdue score substantially increases its representativeness in reflecting ecological exposure hazard. We have developed this enhanced Purdue score risk management tool to be of assistance to industry.


Subject(s)
Endocrine System/drug effects , Environmental Pollution/prevention & control , Hazardous Substances/toxicity , Animals , Environmental Pollution/legislation & jurisprudence , Hazardous Substances/classification , Humans , Research Design , United States , United States Environmental Protection Agency
SELECTION OF CITATIONS
SEARCH DETAIL
...