Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iranian J Environ Health Sci Eng ; 9(1): 21, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-23369510

ABSTRACT

Arsenic contamination of water has been recognized as a serious environmental issue and there are reports on its epidemiological problems to human health. The objective of this study was to evaluate the performances of iron-coated pumice and manganese-coated pumice as the adsorbents for removing arsenate from aqueous solutions. The effect of various parameters such as adsorbent dose, contact time, pH and initial concentration on removal efficiency of arsenate were evaluated in batch mode. The data obtained from the kinetic studies were analyzed using kinetic models of pseudo-first-order and pseudo-second-order. In addition, two isotherm models of Freundlich and Langmuir were used to fit the experimental data. The results showed that the optimum dosage of iron-coated pumice and manganese-coated pumice for arsenate removal were 40 and 80 g/L whereas the adsorption process reached equilibrium after 80 and 100 min, respectively. The maximum removal efficiency of arsenate using the two adsorbents were both recorded in pH=3 as the removal efficiency gradually declined following every increase in pH values of the solution. Iron-coated pumice also showed to have high removal efficiency when the initial concentration of arsenate was high while the low concentration of arsenate was efficiently removed by manganese-coated pumice. Moreover, it was depicted that the adsorption kinetics by both adsorbents followed pseudo-second order equation and the uptake data of arsenate were well fitted with Langmuir isotherm model. Therefore, it could be concluded that iron and manganese-coated pumice could be considered as suitable adsorbents for arsenate removal from aqueous solutions.

2.
Anal Chim Acta ; 635(1): 63-70, 2009 Mar 02.
Article in English | MEDLINE | ID: mdl-19200480

ABSTRACT

A simple procedure has been used for preparation of modified glassy carbon electrode with carbon nanotubes and copper complex. Copper complex [Cu(bpy)(2)]Br(2) was immobilized onto glassy carbon (GC) electrode modified with silicomolybdate, alpha-SiMo(12)O(40)(4-) and single walled carbon nanotubes (SWCNTs). Copper complex and silicomolybdate irreversibly and strongly adsorbed onto GC electrode modified with CNTs. Electrostatic interactions between polyoxometalates (POMs) anions and Cu-complex, cations mentioned as an effective method for fabrication of three-dimensional structures. The modified electrode shows three reversible redox couples for polyoxometalate and one redox couple for Cu-complex at wide range of pH values. The electrochemical behavior, stability and electron transfer kinetics of the adsorbed redox couples were investigated using cyclic voltammetry. Due to electrostatic interaction, copper complex immobilized onto GC/CNTs/alpha-SiMo(12)O(40)(4-) electrode shows more stable voltammetric response compared to GC/CNTs/Cu-complex modified electrode. In comparison to GC/CNTs/Cu-complex the GC/CNTs/alpha-SiMo(12)O(40)(4-) modified electrodes shows excellent electrocatalytic activity toward reduction H(2)O(2) and BrO(3)(-) at more reduced overpotential. The catalytic rate constants for catalytic reduction hydrogen peroxide and bromate were 4.5(+/-0.2)x10(3) M(-1) s(-1) and 3.0(+/-0.10)x10(3) M(-1) s(-1), respectively. The hydrodynamic amperommetry technique at 0.08 V was used for detection of nanomolar concentration of hydrogen peroxide and bromate. Detection limit, sensitivity and linear concentration range proposed sensor for bromate and hydrogen peroxide detection were 1.1 nM and 6.7 nA nM(-1), 10 nM-20 microM, 1 nM, 5.5 nA nM(-1) and 10 nM-18 microM, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...