Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 123(6): 233, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850488

ABSTRACT

Enterocytozoon bieneusi is a common cause of human microsporidiosis and can infect a variety of animal hosts worldwide. In Thailand, previous studies have shown that this parasite is common in domestic animals. However, information on the prevalence and genotypes of this parasite in other synanthropic wildlife, including bats, remains limited. Several pathogens have been previously detected in bats, suggesting that bats may serve as a reservoir for this parasite. In this study, a total of 105 bat guano samples were collected from six different sites throughout Thailand. Of these, 16 from Chonburi (eastern), Ratchaburi (western), and Chiang Rai (northern) provinces tested positive for E. bieneusi, representing an overall prevalence of 15.2%. Based on ITS1 sequence analysis, 12 genotypes were identified, including two known genotypes (D and type IV) frequently detected in humans and ten novel potentially zoonotic genotypes (TBAT01-TBAT10), all belonging to zoonotic group 1. Lyle's flying fox (Pteropus lylei), commonly found in Southeast Asia, was identified as the host in one sample that was also positive for E. bieneusi. Network analysis of E. bieneusi sequences detected in this study and those previously reported in Thailand also revealed intraspecific divergence and recent population expansion, possibly due to adaptive evolution associated with host range expansion. Our data revealed, for the first time, multiple E. bieneusi genotypes of zoonotic significance circulating in Thai bats and demonstrated that bat guano fertilizer may be a vehicle for disease transmission.


Subject(s)
Chiroptera , Enterocytozoon , Genotype , Microsporidiosis , Phylogeny , Chiroptera/parasitology , Chiroptera/microbiology , Animals , Thailand/epidemiology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Prevalence , Humans , Sequence Analysis, DNA , Zoonoses/parasitology , DNA, Ribosomal Spacer/genetics , DNA, Fungal/genetics
2.
Insects ; 15(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38786883

ABSTRACT

In this research, we elucidated the species composition of Culicoides biting midges, infection prevalence, and genetic diversity of Leishmania parasites circulating in the affected community in Chiang Rai Province, being the most endemic area in Northern Thailand. A total of 146 parous and gravid females, belonging to at least twelve Culicoides species in five subgenera and one species group, were trapped from three collection sites with an overall Leishmania prevalence of 26.7% (39/146). Leishmania was detected, using ITS1-PCR, in C. mahasarakamense (15), C. guttifer (11), C. (Trithecoides) spp. (8), C. jacobsoni (2), C. oxystoma (2), and C. orientalis (1). The evidence of Leishmania infection in these last five species represents new records in Northern Thailand. Given a high infection rate in cavernicolous specimens, this indicates an increased risk of parasite exposure when visiting the cave. Using the nanopore amplicon sequencing, L. martiniquensis was ubiquitously identified in all positives, and more than half of these were also co-infected with L. orientalis. The genetic diversity analysis revealed 13 and 17 unique haplotypes for L. martiniquensis and L. orientalis, respectively. Higher haplotype diversity and relatively low nucleotide diversity were observed in both parasite populations, suggesting recent population divergence. Neutrality tests (Tajima's D and Fu and Li's D) showed to be significantly negative, indicating rapid population growth or a selective sweep. Moreover, dominant haplotypes of both Leishmania species were 100% identical to those in all leishmaniasis patients previously reported from Northern Thailand, strongly supporting the imperative role of Culicoides spp. in disease transmission. Essentially, this research provides the first entomological surveillance data representing the sympatric existence, transmission dynamics, and genetic complexity of two autochthonous Leishmania (Mundinia) parasites in several Culicoides species in the endemic area of Northern Thailand. This would contribute to a more complete understanding of the epidemiology of vector infection and facilitate the development of vector control programs to effectively reduce the transmission of this neglected tropical disease in endemic areas of Northern Thailand.

3.
PLoS Negl Trop Dis ; 17(9): e0011565, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37729218

ABSTRACT

BACKGROUND: In South-East Asia, Thailand is the country with the highest number of human autochthonous cases of leishmaniases mostly due to Leishmania martiniquensis. Their transmission remains unresolved to date even though sand flies are known vectors of leishmaniases. As such, we focused a study on the sand fly fauna of a cave in Thailand to explore the biodiversity of potential Leishmania vectors. MAIN RESULTS: We carried out an inventory in Pha Tong cave. We caught and identified 570 Phlebotomine sand flies (452 females and 118 males) and identified 14 species belonging to the genera Phlebotomus, Idiophlebotomus, Chinius, Sergentomyia and Grassomyia. Among these 14 species, two could not be related to known sand fly species. Herein, we propose the description of two new sand fly species, previously unknown to science. The first new species, Phlebotomus shadenae n. sp. is a sand fly of the subgenus Anaphlebotomus. It is morphologically close to Ph. stantoni, a species widely distributed throughout Southeast Asia. However, it differs by the length of the genital filaments in males or by the length of the ducts of the spermathecae in females as well as the high divergence of cytochrome b sequences. Additionally, we revised the systematics of the subgenus Anaphlebotomus and reinstated, by examination of its holotype, the validity of Ph. maynei, an Indian wrongly considered as a synonym of Ph. stantoni in the past. The second new species, Sergentomyia maiae n. sp., differs from a species in the same group, Se. barraudi, by an original cibarial double row of vertical teeth as well as by molecular data. CONCLUSIONS: We propose the description of two new sand fly species for Science with morphological and molecular evidence. Ph. shadenae n. sp. was also found to be distributed in the south of Thailand and in Laos. Future studies need to determine whether these two species can play a role as vectors of Leishmania parasites, Trypanosomatids or Phlebovirus. Most of the species caught in the present study are strictly cavernicolous except Grassomyia sp. and a few Sergentomyia.

4.
Acta Trop ; 244: 106949, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37211153

ABSTRACT

Autochthonous leishmaniasis in Thailand has recently been a public health concern due to an increasing number of new clinical cases. Most indigenous cases were diagnosed with Leishmania (Mundinia) martiniquensis, and Leishmania (Mundinia) orientalis. However, some doubts regarding vector misidentification have arisen and need to be elucidated. Accordingly, we aimed to assess the species composition of sand flies and determine the molecular prevalence of trypanosomatids in the transmission area of leishmaniasis in southern Thailand. In the present study, a total of 569 sand flies were caught from the vicinity of a visceral leishmaniasis patient's house in Na Thawi District, Songkhla Province. Of these, 229 parous and gravid females consisted of Sergentomyia khawi, Se. barraudi, Phlebotomus stantoni, Grassomyia indica, and Se. hivernus, accounting for 31.4%, 30.6%, 29.7%, 7.9%, and 0.4%, respectively. However, Se. gemmea, which has previously been proposed as the most abundant species and putative vector of visceral leishmaniasis, was not found in the present study. Based on ITS1-PCR and sequence analysis, two specimens of Gr. indica and Ph. stantoni showed positive amplification of L. martiniquensis and L. donovani complex, respectively, the first one being presumed indigenous and the second one being not. Anuran Trypanosoma was also molecularly detected using SSU rRNA-PCR and ubiquitously found in 16 specimens of four dominant sand fly species except for Se. hivernus. The obtained sequences could be phylogenetically categorized into the two major amphibian clades (An04/Frog1 and An01+An02/Frog2). The existence of the monophyletic subgroup and distinct lineage suggests them as novel Trypanosoma species. The TCS network analysis of these anuran Trypanosoma sequences also revealed high haplotype diversity (Hd = 0.925 ± 0.050), but low nucleotide diversity (π = 0.019 ± 0.009). Furthermore, the living anuran trypanosomes were microscopically demonstrated in a single specimen of Gr. indica, supporting the vectorial capacity. Importantly, our data confirmed the scarcity of Se. gemmea and also uncovered, for the first time, the co-circulation of L. martiniquensis, L. donovani complex, and suspected novel anuran Trypanosoma spp. in phlebotomine sand files, implicating their potential role as vectors of trypanosomatid parasites. Therefore, the novel data from this study would greatly facilitate the comprehension of the complexity of trypanosomatid transmission and the establishment of prevention and control measures for this neglected disease more effectively.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Leishmaniasis , Phlebotomus , Psychodidae , Trypanosoma , Female , Animals , Leishmaniasis, Visceral/epidemiology , Psychodidae/parasitology , Thailand , Insect Vectors/parasitology , Phlebotomus/parasitology
5.
Acta Trop ; 220: 105953, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33979638

ABSTRACT

Several light trap devices have been invented and developed to assess the abundance of sand flies. Traps available in the market have different designs and attractant combinations to catch sand fly vectors. We evaluated the efficacy of four commercial light traps and determined the effect of trap placement and carbon dioxide (CO2) on sand fly collection in northern Thailand. Trap evaluations were conducted at two natural caves located in Chiang Rai province, Thailand. In the first part of the study, the efficacies of four trap types including the Centers for Disease Control miniature light trap (CDC LT), Encephalitis Vector Survey trap (EVS), CDC Updraft Blacklight trap (CDC UB), and Laika trap (LK) were evaluated and compared using a Latin square experimental design. The second half of the study evaluated the influence of trap placement and CO2 on sand fly collection. Additionally, CDC LT were placed inside, outside, and at the entrance of caves to compare the number of sand flies collected. For the trap efficacy experiment, a total of 11,876 phlebotomine sand flies were collected over 32 trap-nights. Results demonstrated that CDC LT, CDC UB, and LK collected significantly more sand flies than EVS (P > 0.05). However, there were no significant differences between the numbers of sand flies collected by CDC LT, CDC UB, and LK. A total of 6,698 sand flies were collected from the trap placement and CO2 experiment over 72 trap-nights. Results showed that CO2 did not influence the numbers of sand flies captured (P < 0.05), whereas trap placement at the entrance of the caves resulted in collection of significantly more sand flies than traps placed inside and outside of the caves. We found the CDC LT, CDC UB, and LK without CO2 captured the greatest amount of sand flies. This was particularly observed when traps were placed at the entrance of a cave, perhaps because of the greater passage of stimuli caused by wind flow at the entrance of the cave. The light traps in this study can be used effectively to collect sand fly vectors in northern Thailand.


Subject(s)
Carbon Dioxide , Insect Control/methods , Phlebotomus , Psychodidae , Animals , Caves , Disease Vectors , Insect Control/instrumentation , Thailand
6.
Insects ; 10(6)2019 May 28.
Article in English | MEDLINE | ID: mdl-31142009

ABSTRACT

Cattle lice are obligatory blood-sucking parasites, which is the cause of animal health problems worldwide. Recently, several studies have revealed that pathogenic bacteria could be found in cattle lice, and it can act as a potential vector for transmitting louse-borne diseases. However, the cattle lice and their pathogenic bacteria in Thailand have never been evaluated. In the present study, we aim to determine the presence of bacterial pathogens in cattle lice collected from three localities of Thailand. Total genomic DNA was extracted from 109 cattle louse samples and the Polymerase Chain Reaction (PCR) of 18S rRNA was developed to identify the cattle louse. Moreover, PCR was used for screening Bartonella spp., Acinetobacter spp., and Rickettsia spp. in cattle louse samples. The positive PCR products were cloned and sequenced. The phylogenetic tree based on the partial 18S rRNA sequences demonstrated that cattle lice species in this study are classified into two groups according to reference sequences; Haematopinus quadripertusus and Haematopinus spp. closely related to H. tuberculatus. The pathogen detection revealed that Bartonella spp. DNA of gltA and rpoB were detected in 25 of 109 samples (22.93%) both egg and adult stages, whereas Acinetobacter spp. and Rickettsia spp. were not detected in all cattle lice DNA samples. The gltA and rpoB sequences showed that the Bartonella spp. DNA was found in both H. quadripertusus and Haematopinus spp. closely related to H. tuberculatus. This study is the first report of the Bartonella spp. detected in cattle lice from Thailand. The finding obtained from this study could be used to determine whether the cattle lice can serve as a potential vector to transmit these pathogenic bacteria among cattle and may affect animal to human health.

7.
Exp Parasitol ; 146: 64-70, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25300764

ABSTRACT

Molecular techniques were used to identify Fasciola species collected from Chiang Mai Thailand. Morphometrically, 65 stained and 45 fresh worms collected from cattle suggested the possible occurrence of both F. gigantica and F. hepatica. Twenty-two worms comprising 15 from cattle and 7 from human patients, were identified subsequently based on three genetic markers: mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1), mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS2). All of them presented the F. gigantica type in maternally inherited mitochondrial sequences (nad1 and cox1), with six types in each sequence (FgNDI-CM1 to FgNDI-CM6 and FgCOI-CM1 to FgCOI-CM6, respectively). Remarkably, the predominant nad1 type, FgNDI-CM6, was identical to that of aspermic Fasciola sp. formerly reported from Thailand, Japan, Korea, China, Vietnam, and Myanmar. ITS2 sequences were analyzed successfully in 20 worms. Fifteen worms showed the F. gigantica type and five (including one worm from a patient) had mixed ITS2 sequences of both F. gigantica and F. hepatica in the same worms, with additional heterogeneity within both ITS2 types. This study revealed the intermediate form of Fasciola coexisting with F. gigantica for the first time in Thailand.


Subject(s)
Cattle Diseases/parasitology , DNA, Helminth/isolation & purification , Fasciola/isolation & purification , Fascioliasis/parasitology , Animals , Cattle , Cattle Diseases/epidemiology , Cell Nucleus/genetics , Cloning, Molecular , Cyclooxygenase 1/genetics , DNA, Helminth/chemistry , DNA, Mitochondrial/chemistry , DNA, Ribosomal/chemistry , DNA, Ribosomal Spacer/chemistry , Fasciola/classification , Fasciola/genetics , Fasciola/ultrastructure , Fascioliasis/epidemiology , Humans , Phylogeny , Polymerase Chain Reaction , Prevalence , Sequence Analysis, DNA , Thailand/epidemiology
8.
Southeast Asian J Trop Med Public Health ; 44(4): 561-7, 2013 Jul 04.
Article in English | MEDLINE | ID: mdl-24050088

ABSTRACT

The vasculature surrounding the nurse cells of encapsulated Trichinella spiralis has been described previously. It has been postulated the function of these vessels is to support the growth of the parasite. We describe here for the first time the vasculature surrounding the nurse cells of non-encapsulated T. pseudospiralis and T. papuae. Similar to the vasculature of uninfected muscle cells, the vessels surrounding non-encapsulated Trichinella nurse cells are dense and branched longitudinally along the long axis of the muscle cells; they also appear to be similar in diameter. The netting pattern of enlarged vessels found around T. spiralis (encapsulated) nurse cells is not present in non-encapsulated Trichinella infections. The vessels surrounding non-encapsulated Trichinella nurse cells seem to exist prior to parasite invasion of the muscle cell.


Subject(s)
Muscle, Skeletal/pathology , Trichinella/cytology , Trichinella/growth & development , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...