Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Surf ; 7: 100050, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33778219

ABSTRACT

Carbon catabolite repression enables fungi to utilize the most favourable carbon source in the environment, and is mediated by a key regulator, CreA, in most fungi. CreA-mediated regulation has mainly been studied at high monosaccharide concentrations, an uncommon situation in most natural biotopes. In nature, many fungi rely on plant biomass as their major carbon source by producing enzymes to degrade plant cell wall polysaccharides into metabolizable sugars. To determine the role of CreA when fungi grow in more natural conditions and in particular with respect to degradation and conversion of plant cell walls, we compared transcriptomes of a creA deletion and reference strain of the ascomycete Aspergillus niger during growth on sugar beet pulp and wheat bran. Transcriptomics, extracellular sugar concentrations and growth profiling of A. niger on a variety of carbon sources, revealed that also under conditions with low concentrations of free monosaccharides, CreA has a major effect on gene expression in a strong time and substrate composition dependent manner. In addition, we compared the CreA regulon from five fungi during their growth on crude plant biomass or cellulose. It showed that CreA commonly regulated genes related to carbon metabolism, sugar transport and plant cell wall degrading enzymes across different species. We therefore conclude that CreA has a crucial role for fungi also in adapting to low sugar concentrations as occurring in their natural biotopes, which is supported by the presence of CreA orthologs in nearly all fungi.

2.
BMC Genomics ; 20(1): 853, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31726994

ABSTRACT

BACKGROUND: Enzymatic plant biomass degradation by fungi is a highly complex process and one of the leading challenges in developing a biobased economy. Some industrial fungi (e.g. Aspergillus niger) have a long history of use with respect to plant biomass degradation and for that reason have become 'model' species for this topic. A. niger is a major industrial enzyme producer that has a broad ability to degrade plant based polysaccharides. A. niger wild-type, the (hemi-)cellulolytic regulator (xlnR) and xylulokinase (xkiA1) mutant strains were grown on a monocot (corn stover, CS) and dicot (soybean hulls, SBH) substrate. The xkiA1 mutant is unable to utilize the pentoses D-xylose and L-arabinose and the polysaccharide xylan, and was previously shown to accumulate inducers for the (hemi-)cellulolytic transcriptional activator XlnR and the arabinanolytic transcriptional activator AraR in the presence of pentoses, resulting in overexpression of their target genes. The xlnR mutant has reduced growth on xylan and down-regulation of its target genes. The mutants therefore have a similar phenotype on xylan, but an opposite transcriptional effect. D-xylose and L-arabinose are the most abundant monosaccharides after D-glucose in nearly all plant-derived biomass materials. In this study we evaluated the effect of the xlnR and xkiA1 mutation during growth on two pentose-rich substrates by transcriptome analysis. RESULTS: Particular attention was given to CAZymes, metabolic pathways and transcription factors related to the plant biomass degradation. Genes coding for the main enzymes involved in plant biomass degradation were down-regulated at the beginning of the growth on CS and SBH. However, at a later time point, significant differences were found in the expression profiles of both mutants on CS compared to SBH. CONCLUSION: This study demonstrates the high complexity of the plant biomass degradation process by fungi, by showing that mutant strains with fairly straightforward phenotypes on pure mono- and polysaccharides, have much less clear-cut phenotypes and transcriptomes on crude plant biomass.


Subject(s)
Aspergillus niger/genetics , Gene Expression Profiling , Glycine max/microbiology , Mutation , Transcriptome , Zea mays/microbiology , Aspergillus niger/growth & development , Biodegradation, Environmental , Biomass , Cellulose/chemistry , Cellulose/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Hydrolysis
3.
BMC Genomics ; 19(1): 214, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29566661

ABSTRACT

BACKGROUND: Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi, are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases, but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involved in regulating preferential use of different carbon catabolic pathways. RESULTS: Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. CONCLUSION: Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses.


Subject(s)
Aspergillus nidulans/metabolism , Glycolysis , Hexoses/metabolism , Pentoses/metabolism , Aspergillus nidulans/growth & development , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Glucokinase/genetics , Glucokinase/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Metabolomics
4.
BMC Microbiol ; 17(1): 214, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29110642

ABSTRACT

BACKGROUND: The genes of the non-phosphorylative L-rhamnose catabolic pathway have been identified for several yeast species. In Schefferomyces stipitis, all L-rhamnose pathway genes are organized in a cluster, which is conserved in Aspergillus niger, except for the lra-4 ortholog (lraD). The A. niger cluster also contains the gene encoding the L-rhamnose responsive transcription factor (RhaR) that has been shown to control the expression of genes involved in L-rhamnose release and catabolism. RESULT: In this paper, we confirmed the function of the first three putative L-rhamnose utilisation genes from A. niger through gene deletion. We explored the identity of the inducer of the pathway regulator (RhaR) through expression analysis of the deletion mutants grown in transfer experiments to L-rhamnose and L-rhamnonate. Reduced expression of L-rhamnose-induced genes on L-rhamnose in lraA and lraB deletion strains, but not on L-rhamnonate (the product of LraB), demonstrate that the inducer of the pathway is of L-rhamnonate or a compound downstream of it. Reduced expression of these genes in the lraC deletion strain on L-rhamnonate show that it is in fact a downstream product of L-rhamnonate. CONCLUSION: This work showed that the inducer of RhaR is beyond L-rhamnonate dehydratase (LraC) and is likely to be the 2-keto-3-L-deoxyrhamnonate.


Subject(s)
Aspergillus niger/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Metabolic Networks and Pathways/genetics , Rhamnose/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Aspergillus niger/enzymology , Aspergillus niger/genetics , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Fungal/genetics , Genome, Fungal , Genomics , Multigene Family , Real-Time Polymerase Chain Reaction
5.
Environ Microbiol ; 19(11): 4587-4598, 2017 11.
Article in English | MEDLINE | ID: mdl-29027734

ABSTRACT

In A. niger, two transcription factors, AraR and XlnR, regulate the production of enzymes involved in degradation of arabinoxylan and catabolism of the released l-arabinose and d-xylose. Deletion of both araR and xlnR in leads to reduced production of (hemi)cellulolytic enzymes and reduced growth on arabinan, arabinogalactan and xylan. In this study, we investigated the colonization and degradation of wheat bran by the A. niger reference strain CBS 137562 and araR/xlnR regulatory mutants using high-resolution microscopy and exo-proteomics. We discovered that wheat bran flakes have a 'rough' and 'smooth' surface with substantially different affinity towards fungal hyphae. While colonization of the rough side was possible for all strains, the xlnR mutants struggled to survive on the smooth side of the wheat bran particles after 20 and 40 h post inoculation. Impaired colonization ability of the smooth surface of wheat bran was linked to reduced potential of ΔxlnR to secrete arabinoxylan and cellulose-degrading enzymes and indicates that XlnR is the major regulator that drives colonization of wheat bran in A. niger.


Subject(s)
Aspergillus niger/growth & development , Aspergillus niger/metabolism , Fungal Proteins/metabolism , Trans-Activators/metabolism , Triticum/metabolism , Xylans/metabolism , Arabinose/metabolism , Aspergillus niger/genetics , Biomass , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Polysaccharides/metabolism , Proteomics , Trans-Activators/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/microbiology , Xylose/metabolism
6.
FEBS Lett ; 591(10): 1408-1418, 2017 05.
Article in English | MEDLINE | ID: mdl-28417461

ABSTRACT

In Aspergillus niger, the enzymes encoded by gaaA, gaaB, and gaaC catabolize d-galacturonic acid (GA) consecutively into l-galactonate, 2-keto-3-deoxy-l-galactonate, pyruvate, and l-glyceraldehyde, while GaaD converts l-glyceraldehyde to glycerol. Deletion of gaaB or gaaC results in severely impaired growth on GA and accumulation of l-galactonate and 2-keto-3-deoxy-l-galactonate, respectively. Expression levels of GA-responsive genes are specifically elevated in the ∆gaaC mutant on GA as compared to the reference strain and other GA catabolic pathway deletion mutants. This indicates that 2-keto-3-deoxy-l-galactonate is the inducer of genes required for GA utilization.


Subject(s)
Aspergillus niger/growth & development , Fungal Proteins/genetics , Sugar Acids/metabolism , Aspergillus niger/enzymology , Aspergillus niger/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Enzymologic , Metabolic Networks and Pathways , Mutation
7.
FEMS Microbiol Lett ; 363(2): fnv232, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26656279

ABSTRACT

This study aims to compare the role of the transcription factor Fgap1 in oxidative stress response for two Fusarium graminearum strains belonging to the two chemotypes DON/ADON and NIV/FX. While the response to H2O2 was shown to be chemotype dependent, an opposite result was observed for diamide: whatever the chemotype, the global level of TCTB (i.e. trichothecene B) production was strongly increased by the treatment with diamide. Fgap1 was shown to be involved in this regulation for both chemotypes. Our data show that the response to diamide is mediated by Fgap1 whatever the chemotype of the F. graminearum strains. However, the NIV/FX chemotype has developed higher antioxidant capacities in response to oxidative stress. But when this capacity is overwhelmed by an increment in the H2O2 level, the NIV/FX strains also responds by an increase in toxin accumulation.


Subject(s)
Fungal Proteins/metabolism , Fusarium/metabolism , Oxidative Stress , Transcription Factors/metabolism , Diamide/pharmacology , Fungal Proteins/genetics , Fusarium/drug effects , Fusarium/genetics , Hydrogen Peroxide/pharmacology , Transcription Factors/genetics
8.
Adv Appl Microbiol ; 90: 1-28, 2015.
Article in English | MEDLINE | ID: mdl-25596028

ABSTRACT

Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.


Subject(s)
Aspergillus/metabolism , Fungi/metabolism , Plants/microbiology , Polysaccharides/metabolism , Aspergillus/enzymology , Aspergillus/genetics , Biomass , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/enzymology , Fungi/genetics , Plants/chemistry , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...