Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2666: 107-114, 2023.
Article in English | MEDLINE | ID: mdl-37166660

ABSTRACT

Proteins with either RNA or DNA-binding motifs were shown to bind RNA. Immunoprecipitation of such proteins using antibodies and identification of the RNA-binding molecules is called RNA immunoprecipitation (RIP). The RNA precipitated with the studied protein can be detected by real-time polymerase chain reaction (PCR), microarray or sequencing. Here, we detail a method for native immunoprecipitation, without cross-linking, to isolate protein-RNA complexes followed by subsequent extraction and quantification of the co-purified RNA.


Subject(s)
RNA-Binding Proteins , RNA , RNA/chemistry , RNA-Binding Proteins/metabolism , Immunoprecipitation
2.
Nat Biotechnol ; 40(12): 1807-1813, 2022 12.
Article in English | MEDLINE | ID: mdl-35773341

ABSTRACT

Multiple clinical trials of allogeneic T cell therapy use site-specific nucleases to disrupt T cell receptor (TCR) and other genes1-6. In this study, using single-cell RNA sequencing, we investigated genome editing outcomes in primary human T cells transfected with CRISPR-Cas9 and guide RNAs targeting genes for TCR chains and programmed cell death protein 1. Four days after transfection, we found a loss of chromosome 14, harboring the TCRα locus, in up to 9% of the cells and a chromosome 14 gain in up to 1.4% of the cells. Chromosome 7, harboring the TCRß locus, was truncated in 9.9% of the cells. Aberrations were validated using fluorescence in situ hybridization and digital droplet PCR. Aneuploidy was associated with reduced proliferation, induced p53 activation and cell death. However, at 11 days after transfection, 0.9% of T cells still had a chromosome 14 loss. Aneuploidy and chromosomal truncations are, thus, frequent outcomes of CRISPR-Cas9 cleavage that should be monitored and minimized in clinical protocols.


Subject(s)
CRISPR-Cas Systems , T-Lymphocytes , Humans , CRISPR-Cas Systems/genetics , In Situ Hybridization, Fluorescence , Gene Editing/methods , Receptors, Antigen, T-Cell/genetics , Aneuploidy
3.
Nucleic Acids Res ; 43(9): 4517-30, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25855810

ABSTRACT

The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection-the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Multiprotein Complexes/metabolism , Peptide Hydrolases/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , COP9 Signalosome Complex , Cell Line , Cells, Cultured , Cullin Proteins/metabolism , Humans , Mice , Nuclear Proteins/metabolism , Protein Kinases/metabolism
4.
Cancer Res ; 68(8): 2803-12, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18413748

ABSTRACT

CD24 is a potential oncogene reported to be overexpressed in a large variety of human malignancies. We have shown that CD24 is overexpressed in 90% of colorectal tumors at a fairly early stage in the multistep process of carcinogenesis. Anti-CD24 monoclonal antibodies (mAb) induce a significant growth inhibition in colorectal and pancreatic cancer cell lines that express the protein. This study is designed to investigate further the effects of CD24 down-regulation using mAb or small interfering RNA in vitro and in vivo. Western blot analysis showed that anti-CD24 mAb induced CD24 protein down-regulation through lysosomal degradation. mAb augmented growth inhibition in combination with five classic chemotherapies. Xenograft models in vivo showed that tumor growth was significantly reduced in mAb-treated mice. Similarly, stable growth inhibition of cancer cell lines was achieved by down-regulation of CD24 expression using short hairpin RNA (shRNA). The produced clones proliferated more slowly, reached lower saturation densities, and showed impaired motility. Most importantly, down-regulation of CD24 retarded tumorigenicity of human cancer cell lines in nude mice. Microarray analysis revealed a similar pattern of gene expression alterations when cells were subjected to anti-CD24 mAb or shRNA. Genes in the Ras pathway, mitogen-activated protein kinase, or BCL-2 family and others of oncogenic association were frequently down-regulated. As a putative new oncogene that is overexpressed in gastrointestinal malignancies early in the carcinogenesis process, CD24 is a potential target for early intervention in the prevention and treatment of cancer.


Subject(s)
Antibodies, Monoclonal/therapeutic use , CD24 Antigen/genetics , Colorectal Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , RNA, Small Interfering/therapeutic use , CD24 Antigen/immunology , Cell Division , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/pathology , Humans , Pancreatic Neoplasms/pathology , Plasmids , Reverse Transcriptase Polymerase Chain Reaction
5.
Nat Biotechnol ; 21(4): 379-86, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12640466

ABSTRACT

An increasing number of eukaryotic genes are being found to have naturally occurring antisense transcripts. Here we study the extent of antisense transcription in the human genome by analyzing the public databases of expressed sequences using a set of computational tools designed to identify sense-antisense transcriptional units on opposite DNA strands of the same genomic locus. The resulting data set of 2,667 sense-antisense pairs was evaluated by microarrays containing strand-specific oligonucleotide probes derived from the region of overlap. Verification of specific cases by northern blot analysis with strand-specific riboprobes proved transcription from both DNA strands. We conclude that > or =60% of this data set, or approximately 1,600 predicted sense-antisense transcriptional units, are transcribed from both DNA strands. This indicates that the occurrence of antisense transcription, usually regarded as infrequent, is a very common phenomenon in the human genome. Therefore, antisense modulation of gene expression in human cells may be a common regulatory mechanism.


Subject(s)
Algorithms , DNA, Antisense/genetics , Genome, Human , Sequence Alignment/methods , Transcription, Genetic/genetics , Base Sequence , Cluster Analysis , Database Management Systems , Databases, Nucleic Acid , Expressed Sequence Tags , Gene Expression Regulation , Humans , Information Storage and Retrieval/methods , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis/methods , RNA, Antisense/genetics , Sequence Analysis, DNA/methods , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...