Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Interferon Cytokine Res ; 38(4): 161-170, 2018 04.
Article in English | MEDLINE | ID: mdl-29638208

ABSTRACT

Vaccination with whole-cell or acellular (Ac) vaccines has been very effective for the control of pertussis. The immune response to Ac vaccines has been generally associated with a shift toward the Th2 profile. In the present study, overlapping recombinant fragments of filamentous hemagglutinin (FHA) and pertactin (PRN) were produced in Escherichia coli. BALB/c mice were immunized with recombinant FHA and PRN together with the native pertussis toxin and alum or CpG as adjuvant. Immunized mice were subsequently aerosol challenged with Bordetella pertussis. Bacterial growth was assessed in bronchoalveolar lavage samples and the levels of cytokines were quantitated in supernatants of stimulated splenocytes by enzyme-linked immunosorbent assay. Our results demonstrated that both PRN and FHA antigens were able to induce IFN-γ, IL-4, and to some extent IL-17 cytokines in challenged mice. The level of IFN-γ was higher in response to CpG formulated antigens. These findings indicate immunoprotective efficacy of our recombinant FHA and PRN antigens in mice.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Bordetella pertussis/immunology , Hemagglutinins/immunology , Virulence Factors, Bordetella/immunology , Animals , Cells, Cultured , Female , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology
2.
Asian Pac J Cancer Prev ; 18(11): 3103-3110, 2017 11 26.
Article in English | MEDLINE | ID: mdl-29172286

ABSTRACT

Background: Human epidermal growth factor receptor 2 (HER2) is overexpressed in several human malignancies and numerous studies have indicated that it plays important roles in the development and maintenance of the malignant phenotype. Targeting of HER2 molecules with monoclonal antibodies (mAbs) is a promising therapeutic approach. However, anti-HER2 mAbs affect cancer cells differently, depending on the distinct epitopes which are the targets. Methods: Reactivity of a panel of 8 mouse anti-HER2 mAbs was investigated by ELISA and Western blotting using different subdomains of the extracellular domain (ECD) of HER2. All subdomains, including I, II, III, IV, I+II, III+IV and full HER2-ECD were constructed and expressed in CHO cells. Cross-reactivity of the mAbs with other members of the human HER family and Cynomolgus HER2 was also studied by ELISA. The mAbs were also tested by immunohistochemistry (IHC) using HER2 positive breast cancer tissues. Results: Our results demonstrated that 3 out of 8 mAbs detected conformational epitopes (1T0, 2A8 and 1B5), while 5 mAbs identified linear epitopes (1F2, 1H9, 4C7, 1H6 and 2A9). Three of the mAbs recognized subdomain I, one reacted with subdomain I+II, 2 recognized either subdomain III or IV and 2 recognized subdomain III+IV. However, none of our mAbs recognized the subdomain II alone. The mAbs displayed either inhibitory or stimulatory effects on HER2-overexpressing tumor cells and did not react with other members of the human HER family. The pattern of IHC results implied better reactivity of the mAbs recognizing linear epitopes. Conclusions: Our findings suggest that paired subdomains of HER2 are essential for mapping of mAbs recognizing conformational epitopes. Moreover, there seems to be no association between subdomain specificity and antitumor activity of our anti-HER2 mAbs.

3.
J Immunotoxicol ; 13(2): 243-8, 2016.
Article in English | MEDLINE | ID: mdl-25990600

ABSTRACT

Tetanus is a highly fatal disease caused by tetanus neurotoxin (TeNT) and remains a major threat to human and animal health, despite preventive strategies. TeNT is composed of heavy and light chain linked by a disulfide bond. The antibody response to TeNT is polyclonal and directed to multiple epitopes within both the light and heavy chains, leading to toxin neutralization. This study was undertaken to localize and compare neutralizing epitopes recognized by human and mouse TeNT-specific antibodies at a clonal level. In the present study, 22 murine hybridoma clones and 50 human lymphoblastoid cell lines secreting monoclonal antibodies (mAb) were generated against TeNT. The specificity of these mAb was determined using different recombinant fragments of tetanus toxin. Moreover, this study investigated the in vitro toxin neutralizing activity of these mAb by a ganglioside GT1b assay. The results showed that tetanus toxoid immunization in humans and BALB/c mice induced a vigorous humoral immune response against different fragments of TeNT, particularly the carboxyl-terminal fragment of the heavy chain (known as fragment C). The fragment C-specific human and mouse mAb could largely neutralize TeNT. However, while all fragment C-specific human mAb reacted with the carboxyl-terminal part of this fragment (H(CC)), the majority of the mouse mAb failed to recognize this region. These results suggested that fragment C is the major target for the TeNT neutralizing antibodies, although different epitopes seem to be targeted by human and mouse antibodies.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Neutralizing/immunology , Antibody Formation/drug effects , Tetanus Toxin/pharmacology , Animals , Female , Humans , Male , Mice , Species Specificity
4.
Hum Vaccin Immunother ; 10(2): 344-51, 2014.
Article in English | MEDLINE | ID: mdl-24126015

ABSTRACT

Tetanus is caused by the tetanus neurotoxin (TeNT), a 150 kDa single polypeptide molecule which is cleaved into an active two-chain molecule composed of a 50 kDa N-terminal light (L) and a 100 kDa C-terminal heavy (H) chains. Recently, extensive effort has focused on characterization of TeNT binding receptors and toxin neutralization by monoclonal antibodies (mAbs). Toxin binding inhibition and neutralization is routinely assessed either in vitro by the ganglioside GT1b binding inhibition assay or in vivo using an animal model. These two assay systems have never been compared. In the present study, we report characterization of eleven mAbs against different parts of TeNT. The toxin inhibitory and neutralization activity of the mAbs was assessed in vitro and in vivo respectively. Our data demonstrated that seven mAbs bind to fragment C of the heavy chain, two mAbs react with the light chain, one mAb recognizes both chains and one mAb reacts with neither light chain nor fragment C. Six fragment C specific mAbs were able to inhibit TeNT binding to GT1b ganglioside in vitro but three failed to neutralize the toxin in vivo. One in vitro inhibitory mAb (1F3E3) was found to synergize with the in vivo neutralizing mAbs to reduce toxin lethal activity in vivo. Sequencing of the immunoglobulin heavy and light chain variable region genes revealed that the three in vivo neutralizing mAbs were derived from a common origin. Altogether, our data suggests that fragment C specific mAbs contribute to toxin neutralization in both systems, though some of the GT1b binding inhibitory mAbs may not be able to neutralize TeNT in vivo.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Botulism/prevention & control , Tetanus Toxin/antagonists & inhibitors , Animals , Gangliosides/metabolism , Male , Mice, Inbred BALB C , Neutralization Tests , Protein Binding , Survival Analysis
5.
Avicenna J Med Biotechnol ; 5(4): 220-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24285996

ABSTRACT

BACKGROUND: Light chain (LC) and heavy chain carboxyterminal subdomain (HCC) fragments are the most important parts of tetanus neurotoxin (TeNT) which play key roles in toxicity and binding of TeNT, respectively. In the present study, these two fragments were cloned and expressed in a prokaryotic system and their identity was confirmed using anti-TeNT specific polyclonal and monoclonal antibodies. METHODS: LC and HCC gene segments were amplified from Clostridium tetani genomic DNA by PCR, cloned into pET28b(+) cloning vector and transformed in Escherichia coli (E. coli) BL21(DE3) expression host. Recombinant proteins were then purified through His-tag using Nickel-based chromatography and characterized by SDS-PAGE, Western blotting and ELISA techniques. RESULTS: Recombinant light chain and HCC fragments were successfully cloned and expressed in (E. coli) BL21 (DE3). Optimization of the induction protocol resulted in production of high levels of HCC (~35% of total bacterial protein) and to lesser extends of LC (~5%). Reactivity of the His-tag purified proteins with specific polyclonal and monoclonal antibodies confirmed their renatured structure and identity. CONCLUSION: Our results indicate successful cloning and production of recombinant LC and HCC fragments of TeNT. These two recombinant proteins are potentially useful tools for screening and monitoring of anti-TeNT antibody response and vaccine production.

SELECTION OF CITATIONS
SEARCH DETAIL
...